Theory of the Spatial Structure of Non-linear Modes in Novel and Complex Laser Cavities

A. Stone, H. Tureci, L. Ge, S. Rotter
{"title":"Theory of the Spatial Structure of Non-linear Modes in Novel and Complex Laser Cavities","authors":"A. Stone, H. Tureci, L. Ge, S. Rotter","doi":"10.1109/ICTON.2007.4296241","DOIUrl":null,"url":null,"abstract":"A new formalism [1,2] for calculating exact steady-state non-linear multi-mode lasing states for complex resonators is developed and applied to conventional edge-emitting lasers and to lasers with chaotic or random cavities. The theory solves a long-standing problem in lasing theory: how to describe the multi-mode lasing states of an open cavity. Moreover it includes the effects of mode competition and spatial hole-burning to all orders within the approximation of stationary inversion. Lasing modes are expanded in terms of sets of biorthogonal \"constant flux\" (CF) states and satisfy a self-consistent equation. For high finesse cavities each lasing mode is proportional to one CF state which inside the cavity behaves like a linear resonance; for low finesse as in a random laser, novel composite modes are predicted which do not correspond to any passive cavity resonance.","PeriodicalId":265478,"journal":{"name":"2007 9th International Conference on Transparent Optical Networks","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 9th International Conference on Transparent Optical Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTON.2007.4296241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new formalism [1,2] for calculating exact steady-state non-linear multi-mode lasing states for complex resonators is developed and applied to conventional edge-emitting lasers and to lasers with chaotic or random cavities. The theory solves a long-standing problem in lasing theory: how to describe the multi-mode lasing states of an open cavity. Moreover it includes the effects of mode competition and spatial hole-burning to all orders within the approximation of stationary inversion. Lasing modes are expanded in terms of sets of biorthogonal "constant flux" (CF) states and satisfy a self-consistent equation. For high finesse cavities each lasing mode is proportional to one CF state which inside the cavity behaves like a linear resonance; for low finesse as in a random laser, novel composite modes are predicted which do not correspond to any passive cavity resonance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型复杂激光腔中非线性模的空间结构理论
本文提出了一种计算复杂谐振腔精确稳态非线性多模激光态的新形式[1,2],并将其应用于传统的边缘发射激光器和混沌或随机腔激光器。该理论解决了激光理论中一个长期存在的问题:如何描述开腔的多模激光状态。在平稳反演近似范围内,考虑了模式竞争和空间烧孔对各阶的影响。将激光模式展开为双正交的“恒通量”(CF)状态集,并满足自洽方程。对于高精细度腔,每个激光模式与腔内的一个CF态成正比,其表现为线性共振;对于低精细度的随机激光,预测了不对应于任何被动腔共振的新型复合模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Method to Ensure a Feasible Wavelength Assignment within the Routing-Only Problem for Transparent WDM Networks Fundamental Limits and Recent Advances in Slow and Fast Light Systems Based on Optical Parametric Processes in Fibers Distributed Coupling Coefficient DFB SOA-Based Optical Switch Investigation of Optical-Burst-Transmission Induced Impairment in Gain-Clamped Amplifiers Waveguide Lasers in Er:Yb-Doped Phosphate Glass Fabricated by Femtosecond Laser Writing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1