Visual Browsing of Remote and Distributed Data

P. Krishnaswamy, S. Eick, R. Grossman
{"title":"Visual Browsing of Remote and Distributed Data","authors":"P. Krishnaswamy, S. Eick, R. Grossman","doi":"10.1117/12.584371","DOIUrl":null,"url":null,"abstract":"Data repositories around the world hold many thousands of data sets. Finding information from these data sets is greatly facilitated by being able to quickly and efficiently browse remote data sets. In this note, we introduce the Iconic Remote Visual Data Exploration tool(IRVDX), which is a visual data mining tool used for exploring the features of remote and distributed data without the necessity of downloading the entire data set. IRVDX employs three kinds of visualizations: one provides a reduced representation of the data sets, which we call Dataset Icons. These icons show the important statistical characteristics of data sets and help to identify relevant data sets from distributed repositories. Another one is called the Remote Dataset Visual Browser that provides visualizations to browse remote data without downloading the complete data set to identify its content. The final one provides visualizations to show the degree of similarity between two data sets and to visually determine whether a join of two remote data sets will be meaningful.","PeriodicalId":109217,"journal":{"name":"IEEE Symposium on Information Visualization","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Information Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.584371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data repositories around the world hold many thousands of data sets. Finding information from these data sets is greatly facilitated by being able to quickly and efficiently browse remote data sets. In this note, we introduce the Iconic Remote Visual Data Exploration tool(IRVDX), which is a visual data mining tool used for exploring the features of remote and distributed data without the necessity of downloading the entire data set. IRVDX employs three kinds of visualizations: one provides a reduced representation of the data sets, which we call Dataset Icons. These icons show the important statistical characteristics of data sets and help to identify relevant data sets from distributed repositories. Another one is called the Remote Dataset Visual Browser that provides visualizations to browse remote data without downloading the complete data set to identify its content. The final one provides visualizations to show the degree of similarity between two data sets and to visually determine whether a join of two remote data sets will be meaningful.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
远程和分布式数据的可视化浏览
世界各地的数据存储库拥有成千上万的数据集。通过能够快速有效地浏览远程数据集,可以大大方便地从这些数据集中查找信息。在本文中,我们将介绍icon远程可视化数据探索工具(IRVDX),这是一个可视化数据挖掘工具,用于探索远程和分布式数据的特性,而无需下载整个数据集。IRVDX采用了三种可视化:一种提供了数据集的简化表示,我们称之为数据集图标。这些图标显示了数据集的重要统计特征,并有助于从分布式存储库中识别相关数据集。另一种称为远程数据集可视化浏览器,它提供了浏览远程数据的可视化,而无需下载完整的数据集来识别其内容。最后一个提供可视化,以显示两个数据集之间的相似程度,并直观地确定两个远程数据集的连接是否有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Value and Relation Display for Interactive Exploration of High Dimensional Datasets Evaluating a System for Interactive Exploration of Large, Hierarchically Structured Document Repositories An Associative Information Visualizer A Rank-by-Feature Framework for Unsupervised Multidimensional Data Exploration Using Low Dimensional Projections Exploring and Visualizing the History of InfoVis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1