Incipient Immobilization Detection for Lightweight Rovers Operating in Deformable Terrain

A. Lines, Joshua Elliott, L. Ray
{"title":"Incipient Immobilization Detection for Lightweight Rovers Operating in Deformable Terrain","authors":"A. Lines, Joshua Elliott, L. Ray","doi":"10.1115/1.4056408","DOIUrl":null,"url":null,"abstract":"\n This paper presents a new method of detecting incipient immobilization for a wheeled mobile robot operating in deformable terrain with high spatial variability. This approach uses proprioceptive sensor data from a four-wheeled, rigid chassis rover operating in poorly bonded, compressible snow to develop canonic, dynamical system models of the robot's operation. These serve as hypotheses in a multiple model estimation algorithm used to predict the robot's mobility in real-time. This prediction method eliminates the need for choosing an empirical wheel-terrain interaction model, determining terramechanics parameter values, or for collecting large training datasets needed for machine learning classification. When tested on field data, this new method warns of decreased mobility an average of 1.8 meters and 2.9 seconds before the rover is completely immobilized. This system also proves to be a reliable predictor of immobilization when evaluated in simulated scenarios of rovers with passive suspension maneuvering in more variable terrain.","PeriodicalId":164923,"journal":{"name":"Journal of Autonomous Vehicles and Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Vehicles and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new method of detecting incipient immobilization for a wheeled mobile robot operating in deformable terrain with high spatial variability. This approach uses proprioceptive sensor data from a four-wheeled, rigid chassis rover operating in poorly bonded, compressible snow to develop canonic, dynamical system models of the robot's operation. These serve as hypotheses in a multiple model estimation algorithm used to predict the robot's mobility in real-time. This prediction method eliminates the need for choosing an empirical wheel-terrain interaction model, determining terramechanics parameter values, or for collecting large training datasets needed for machine learning classification. When tested on field data, this new method warns of decreased mobility an average of 1.8 meters and 2.9 seconds before the rover is completely immobilized. This system also proves to be a reliable predictor of immobilization when evaluated in simulated scenarios of rovers with passive suspension maneuvering in more variable terrain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变形地形下轻型探测车的初始制动检测
针对轮式移动机器人在高空间变异性的可变形地形中工作,提出了一种检测机器人早期失稳的新方法。该方法使用来自四轮刚性底盘漫游车的本体感觉传感器数据,这些数据来自于在粘合不良、可压缩的雪地中运行的漫游车,以开发机器人运行的经典动力系统模型。这些作为多模型估计算法的假设,用于实时预测机器人的移动性。这种预测方法不需要选择经验车轮-地形相互作用模型,确定地形力学参数值,或收集机器学习分类所需的大型训练数据集。在实地数据测试中,这种新方法在月球车完全静止之前发出了平均1.8米和2.9秒的移动下降警告。该系统也被证明是一个可靠的预测固定的漫游者与被动悬架机动在更多变的地形模拟场景进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhance Road Detection Data Processing of LiDAR Point Clouds to Specifically Identify Unmarked Gravel Rural Roads Tracking Algorithm Application Integrating Visual and Radar Information in Intelligent Vehicle Target Tracking Simulation Study on Hydraulic Braking Control of Engine Motor of Hybrid Electric Vehicle Robust Visual SLAM in Dynamic Environment Based on Motion Detection and Segmentation Two-Carrier Cooperative Parking Robot: Design and Implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1