A Novel Feature Extraction Method and Its Relationships with PCA and KPCA

Deihui Wu
{"title":"A Novel Feature Extraction Method and Its Relationships with PCA and KPCA","authors":"Deihui Wu","doi":"10.1109/CCPR.2008.19","DOIUrl":null,"url":null,"abstract":"A new feature extraction method for high dimensional data using least squares support vector regression (LSSVR) is presented. Firstly, the expressions of optimal projection vectors are derived into the same form as that in the LSSVR algorithm by specially extending the feature of training samples. So the optimal projection vectors could be obtained by LSSVR. Then, using the kernel tricks, the data are mapped from the original input space to a high dimensional feature, and nonlinear feature extraction is here realized from linear version. Finally, it is proved that 1) the method presented has the same result as principal component analysis (PCA). 2) This method is more suitable for the higher dimensional input space compared. 3) The nonlinear feature extraction of the method is equivalent to kernel principal component analysis (KPCA).","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A new feature extraction method for high dimensional data using least squares support vector regression (LSSVR) is presented. Firstly, the expressions of optimal projection vectors are derived into the same form as that in the LSSVR algorithm by specially extending the feature of training samples. So the optimal projection vectors could be obtained by LSSVR. Then, using the kernel tricks, the data are mapped from the original input space to a high dimensional feature, and nonlinear feature extraction is here realized from linear version. Finally, it is proved that 1) the method presented has the same result as principal component analysis (PCA). 2) This method is more suitable for the higher dimensional input space compared. 3) The nonlinear feature extraction of the method is equivalent to kernel principal component analysis (KPCA).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的特征提取方法及其与主成分分析和KPCA的关系
提出了一种基于最小二乘支持向量回归的高维数据特征提取方法。首先,通过特别扩展训练样本的特征,将最优投影向量的表达式导出为与LSSVR算法相同的形式;因此,LSSVR可以得到最优的投影向量。然后,利用核技巧,将数据从原始输入空间映射到高维特征上,实现从线性版本的非线性特征提取。最后,证明了该方法与主成分分析(PCA)具有相同的结果。2)与高维输入空间相比,该方法更适用于高维输入空间。3)该方法的非线性特征提取相当于核主成分分析(KPCA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Gait Recognition Method Based on Standard Deviation Energy Image A New Method for Facial Beauty Assessment Content-Based Semantic Indexing of Image using Fuzzy Support Vector Machines Stochastic Segment Model Decoding Algorithm Based on Neighboring Segments and its Application in LVCSR Study on Highlights Detection in Soccer Video Based on the Location of Slow Motion Replay and Goal Net Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1