Ghazaleh Babanejad Dehaki, H. Ibrahim, F. Sidi, N. Udzir, A. Alwan
{"title":"A Rule-based Skyline Computation over a Dynamic Database","authors":"Ghazaleh Babanejad Dehaki, H. Ibrahim, F. Sidi, N. Udzir, A. Alwan","doi":"10.1145/3428757.3429117","DOIUrl":null,"url":null,"abstract":"Skyline query which relies on the notion of Pareto dominance filters the data items from a database by ensuring only those data items that are not worse than any others are selected as skylines. However, the dynamic nature of databases in which their states and/or structures change throughout their lifetime to incorporate the current and latest information of database applications, requires a new set of skylines to be derived. Blindly computing skylines on the new state/structure of a database is inefficient, as not all the data items are affected by the changes. Hence, this paper proposes a rule-based approach in tackling the above issue with the main aim at avoiding unnecessary skyline computations. Based on the type of operation that changes the state/structure of a database, i.e. insert/delete/update a data item(s) or add/remove a dimension(s), a set of rules are defined. Besides, the prominent dominance relationships when pairwise comparisons are performed are retained; which are then utilised in the process of computing a new set of skylines. Several analyses have been conducted to evaluate the performance and prove the efficiency of our proposed solution.","PeriodicalId":212557,"journal":{"name":"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3428757.3429117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Skyline query which relies on the notion of Pareto dominance filters the data items from a database by ensuring only those data items that are not worse than any others are selected as skylines. However, the dynamic nature of databases in which their states and/or structures change throughout their lifetime to incorporate the current and latest information of database applications, requires a new set of skylines to be derived. Blindly computing skylines on the new state/structure of a database is inefficient, as not all the data items are affected by the changes. Hence, this paper proposes a rule-based approach in tackling the above issue with the main aim at avoiding unnecessary skyline computations. Based on the type of operation that changes the state/structure of a database, i.e. insert/delete/update a data item(s) or add/remove a dimension(s), a set of rules are defined. Besides, the prominent dominance relationships when pairwise comparisons are performed are retained; which are then utilised in the process of computing a new set of skylines. Several analyses have been conducted to evaluate the performance and prove the efficiency of our proposed solution.