An accurate modeling method utilizing application-specific statistical information and its application to SRAM yield estimation

Hidetoshi Matsuoka, Hiroshi Ikeda, H. Higuchi, Yoshinori Tomita
{"title":"An accurate modeling method utilizing application-specific statistical information and its application to SRAM yield estimation","authors":"Hidetoshi Matsuoka, Hiroshi Ikeda, H. Higuchi, Yoshinori Tomita","doi":"10.1109/ISQED.2010.5450411","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new model construction method utilizing application specific physical information and present its application to SRAM yield calculation. The physical information is extracted as statistical distributions from past simulation results automatically. Experimental results show our method achieves 700x speed up over non modeling method and more than 10x speed up over the conventional modeling method. It requires only 5.3 samples to model a fifth order full cross term polynomial with 21 coefficients and is free from over-fitting and singular matrix problem. This modeling method can be a general approach to create models with application specific physical information.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"771 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a new model construction method utilizing application specific physical information and present its application to SRAM yield calculation. The physical information is extracted as statistical distributions from past simulation results automatically. Experimental results show our method achieves 700x speed up over non modeling method and more than 10x speed up over the conventional modeling method. It requires only 5.3 samples to model a fifth order full cross term polynomial with 21 coefficients and is free from over-fitting and singular matrix problem. This modeling method can be a general approach to create models with application specific physical information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种利用特定应用统计信息的精确建模方法及其在SRAM产量估算中的应用
本文提出了一种利用特定应用物理信息构建模型的新方法,并介绍了其在SRAM成品率计算中的应用。从过去的模拟结果中自动提取物理信息作为统计分布。实验结果表明,该方法比非建模方法速度提高了700倍,比传统建模方法速度提高了10倍以上。它只需要5.3个样本就可以建立一个有21个系数的五阶全交叉项多项式,并且不存在过拟合和奇异矩阵问题。这种建模方法可以作为使用特定于应用程序的物理信息创建模型的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low power clock network placement framework Body bias driven design synthesis for optimum performance per area Adaptive task allocation for multiprocessor SoCs Reliability analysis of analog circuits by lifetime yield prediction using worst-case distance degradation rate Low power clock gates optimization for clock tree distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1