Near time optimal recovery in a digitally current mode controlled buck converter driving a CPL

Rabisankar Roy, S. Kapat
{"title":"Near time optimal recovery in a digitally current mode controlled buck converter driving a CPL","authors":"Rabisankar Roy, S. Kapat","doi":"10.1109/APEC.2018.8341027","DOIUrl":null,"url":null,"abstract":"Stability of a distributed power architecture (DPA) still remains a major concern, even though individual stand-alone DC-DC converters are designed with sufficient (small-signal) stability margins. In such architectures, a tightly regulated point-of-load (PoL) converter resembles a constant power load (CPL) which introduces a negative-impedance effect to the source converter. This effect may introduce limit cycle oscillation (LCO) and may eventually destabilize the overall DPA. In this paper, a source buck converter is considered under digital current-mode control (DCMC) with a proportional-integral (PI) voltage controller, which is driving a CPL buck converter. During a power step-transient in the CPL, stable controller gain ranges under DCMC are computed for the source converter for individual operating conditions. Thereafter, a phase-plane based geometric framework is proposed to compute the optimal proportional gain for the source converter to achieve near time optimal recovery. A hardware prototype is made with 50 W nominal power ratings for individual converters. Analytical predictions and improved performance are validated experimentally.","PeriodicalId":113756,"journal":{"name":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2018.8341027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Stability of a distributed power architecture (DPA) still remains a major concern, even though individual stand-alone DC-DC converters are designed with sufficient (small-signal) stability margins. In such architectures, a tightly regulated point-of-load (PoL) converter resembles a constant power load (CPL) which introduces a negative-impedance effect to the source converter. This effect may introduce limit cycle oscillation (LCO) and may eventually destabilize the overall DPA. In this paper, a source buck converter is considered under digital current-mode control (DCMC) with a proportional-integral (PI) voltage controller, which is driving a CPL buck converter. During a power step-transient in the CPL, stable controller gain ranges under DCMC are computed for the source converter for individual operating conditions. Thereafter, a phase-plane based geometric framework is proposed to compute the optimal proportional gain for the source converter to achieve near time optimal recovery. A hardware prototype is made with 50 W nominal power ratings for individual converters. Analytical predictions and improved performance are validated experimentally.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
驱动CPL的数字电流模式控制降压变换器的近时间最优恢复
分布式电源架构(DPA)的稳定性仍然是一个主要问题,即使单个独立的DC-DC转换器设计有足够的(小信号)稳定裕度。在这样的架构中,严格调节的负载点(PoL)转换器类似于恒定功率负载(CPL),它为源转换器引入了负阻抗效应。这种效应可能会引入极限环振荡(LCO),并最终使整个DPA不稳定。本文考虑在数字电流模式控制(DCMC)下,采用比例积分(PI)电压控制器驱动CPL降压变换器。在CPL的功率阶跃暂态过程中,计算了源变换器在DCMC下的稳定控制器增益范围。然后,提出了一种基于相平面的几何框架来计算源变换器的最优比例增益,以实现近时间最优恢复。硬件原型是由50 W额定功率的个别转换器。通过实验验证了分析预测和改进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Duty phase shift technique for extended-duty-ratio boost converter for reducing device voltage stress over wider operating range Reliability evaluation of an impedance-source PV microconverter A hybrid flyback LED driver with utility grid and renewable energy interface A transformerless single-phase symmetrical Z-source HERIC inverter with reduced leakage currents for PV systems A carrier magnitude varying modulation for distributed static series compensator to achieve a maximum reactive power generating capability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1