Network Load Adaptation for Collective Perception in V2X Communications

Quentin Delooz, Andreas Festag
{"title":"Network Load Adaptation for Collective Perception in V2X Communications","authors":"Quentin Delooz, Andreas Festag","doi":"10.1109/ICCVE45908.2019.8964988","DOIUrl":null,"url":null,"abstract":"Collective perception uses V2X communications to increase the perception capabilities of vehicles. Relying on the perceived data from their local sensors, nodes exchange information about the objects they detect in their surroundings. An object can be anything significant for the nodes' safety, e.g., obstacles on the road, other vehicles or pedestrians. The amount of data generated by each node is determined by the number of perceived objects and the generation frequency of the messages carrying the detected objects. Considering the limited bandwidth of the wireless channel, the data load generated by collective perception can easily exceed the channel capacity. In this paper, we investigate three schemes that filter the number of objects in the messages and thereby adjust the network load in order to optimize the transmission of perceived objects. Our simulation-based performance evaluation indicates that the use of filtering is an effective approach to improve network-related performance metrics, whereas the expected impairment of the perception quality is rather small. The comparison of the filtering algorithms provide insights into the tradeoff between network-related metrics and perception quality.","PeriodicalId":384049,"journal":{"name":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVE45908.2019.8964988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Collective perception uses V2X communications to increase the perception capabilities of vehicles. Relying on the perceived data from their local sensors, nodes exchange information about the objects they detect in their surroundings. An object can be anything significant for the nodes' safety, e.g., obstacles on the road, other vehicles or pedestrians. The amount of data generated by each node is determined by the number of perceived objects and the generation frequency of the messages carrying the detected objects. Considering the limited bandwidth of the wireless channel, the data load generated by collective perception can easily exceed the channel capacity. In this paper, we investigate three schemes that filter the number of objects in the messages and thereby adjust the network load in order to optimize the transmission of perceived objects. Our simulation-based performance evaluation indicates that the use of filtering is an effective approach to improve network-related performance metrics, whereas the expected impairment of the perception quality is rather small. The comparison of the filtering algorithms provide insights into the tradeoff between network-related metrics and perception quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
V2X通信中集体感知的网络负载自适应
集体感知使用V2X通信来提高车辆的感知能力。依靠来自本地传感器的感知数据,节点交换它们在周围检测到的物体的信息。对象可以是对节点安全有重要意义的任何对象,例如道路上的障碍物、其他车辆或行人。每个节点生成的数据量由感知对象的数量和承载检测对象的消息的生成频率决定。由于无线信道的带宽有限,集体感知产生的数据负载很容易超过信道容量。在本文中,我们研究了三种方案,过滤消息中的对象数量,从而调整网络负载,以优化感知对象的传输。我们基于仿真的性能评估表明,使用过滤是改善网络相关性能指标的有效方法,而感知质量的预期损害相当小。过滤算法的比较提供了对网络相关度量和感知质量之间权衡的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating Automotive Antennas for Cellular Radio Communications Online validity monitor for vehicle dynamics models Multi-actuated ground vehicle tyre force estimation through a coupled 1D simulation-estimation framework Evaluation of an indoor localization system for a mobile robot Applications and Trends in Connected Vehicles: Debates and Conclusions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1