Automatic Multiface Expression Recognition Using Convolutional Neural Network

C. PadmapriyaK., V. Leelavathy, Angelin Gladston
{"title":"Automatic Multiface Expression Recognition Using Convolutional Neural Network","authors":"C. PadmapriyaK., V. Leelavathy, Angelin Gladston","doi":"10.4018/IJAIML.20210701.OA8","DOIUrl":null,"url":null,"abstract":"The human facial expressions convey a lot of information visually. Facial expression recognition plays a crucial role in the area of human-machine interaction. Automatic facial expression recognition system has many applications in human behavior understanding, detection of mental disorders and synthetic human expressions. Recognition of facial expression by computer with high recognition rate is still a challenging task. Most of the methods utilized in the literature for the automatic facial expression recognition systems are based on geometry and appearance. Facial expression recognition is usually performed in four stages consisting of pre-processing, face detection, feature extraction, and expression classification. In this paper we applied various deep learning methods to classify the seven key human emotions: anger, disgust, fear, happiness, sadness, surprise and neutrality. The facial expression recognition system developed is experimentally evaluated with FER dataset and has resulted with good accuracy.","PeriodicalId":217541,"journal":{"name":"Int. J. Artif. Intell. Mach. Learn.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJAIML.20210701.OA8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The human facial expressions convey a lot of information visually. Facial expression recognition plays a crucial role in the area of human-machine interaction. Automatic facial expression recognition system has many applications in human behavior understanding, detection of mental disorders and synthetic human expressions. Recognition of facial expression by computer with high recognition rate is still a challenging task. Most of the methods utilized in the literature for the automatic facial expression recognition systems are based on geometry and appearance. Facial expression recognition is usually performed in four stages consisting of pre-processing, face detection, feature extraction, and expression classification. In this paper we applied various deep learning methods to classify the seven key human emotions: anger, disgust, fear, happiness, sadness, surprise and neutrality. The facial expression recognition system developed is experimentally evaluated with FER dataset and has resulted with good accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的多面表情自动识别
人类的面部表情在视觉上传达了很多信息。面部表情识别在人机交互领域起着至关重要的作用。面部表情自动识别系统在人类行为理解、精神障碍检测和人类表情合成等方面有着广泛的应用。人脸表情的高识别率计算机识别仍然是一个具有挑战性的任务。文献中用于面部表情自动识别系统的方法大多是基于几何和外观的。面部表情识别通常分为预处理、人脸检测、特征提取和表情分类四个阶段。在本文中,我们应用各种深度学习方法对七种关键的人类情绪进行分类:愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中立。利用ferb数据集对所开发的人脸表情识别系统进行了实验评估,取得了较好的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and Implications of Adopting AI and Machine Learning in Marketing, Servicing, and Communications Technology Survey of Recent Applications of Artificial Intelligence for Detection and Analysis of COVID-19 and Other Infectious Diseases Boosting Convolutional Neural Networks Using a Bidirectional Fast Gated Recurrent Unit for Text Categorization Using Open-Source Software for Business, Urban, and Other Applications of Deep Neural Networks, Machine Learning, and Data Analytics Tools Autonomous Navigation Using Deep Reinforcement Learning in ROS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1