Beyond Shakedown-Ratcheting Boundary

R. Adibi-Asl, W. Reinhardt
{"title":"Beyond Shakedown-Ratcheting Boundary","authors":"R. Adibi-Asl, W. Reinhardt","doi":"10.1115/PVP2018-85050","DOIUrl":null,"url":null,"abstract":"The ASME Boiler and Pressure Vessel Code (Section III and Section VIII) provides requirements to avoid a ratcheting (accumulating permanent strain) condition under cyclic thermal load application. The ratchet check in this code is based on the solutions presented by Miller in 1959. One important focus in Miller’s work was to estimate the accumulated plastic strain under cyclic loading. The existing pressure vessels and piping codes have been adopting Miller’s ratchet boundary solution where there is no cyclic plastic accumulation of strain. However, some of these codes also provide limit on accumulated plastic strain under ratcheting conditions. Since the cyclic loading also causes fatigue damage in thee component, the question how to account for the interaction of ratchet deformation, which may contribute to damage in the material, and fatigue damage arises, since the fatigue curves are obtained from tests in the absence of ratcheting. This paper investigates the solutions to calculate growth strain (incremental plastic strain) and their application in design including taking into account the interaction with fatigue. Finite element analysis is presented to validate the analytical solutions.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: Codes and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-85050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ASME Boiler and Pressure Vessel Code (Section III and Section VIII) provides requirements to avoid a ratcheting (accumulating permanent strain) condition under cyclic thermal load application. The ratchet check in this code is based on the solutions presented by Miller in 1959. One important focus in Miller’s work was to estimate the accumulated plastic strain under cyclic loading. The existing pressure vessels and piping codes have been adopting Miller’s ratchet boundary solution where there is no cyclic plastic accumulation of strain. However, some of these codes also provide limit on accumulated plastic strain under ratcheting conditions. Since the cyclic loading also causes fatigue damage in thee component, the question how to account for the interaction of ratchet deformation, which may contribute to damage in the material, and fatigue damage arises, since the fatigue curves are obtained from tests in the absence of ratcheting. This paper investigates the solutions to calculate growth strain (incremental plastic strain) and their application in design including taking into account the interaction with fatigue. Finite element analysis is presented to validate the analytical solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越震荡-棘轮边界
ASME锅炉和压力容器规范(第III节和第VIII节)规定了在循环热负荷应用下避免棘轮(累积永久应变)条件的要求。代码中的棘轮校验基于Miller在1959年提出的解决方案。米勒工作的一个重要焦点是估计循环加载下的累积塑性应变。现有的压力容器和管道规范在不存在应变循环塑性累积的情况下一直采用米勒棘轮边界解。然而,其中一些规范也规定了棘轮条件下累积塑性应变的极限。由于循环载荷也会导致三种构件的疲劳损伤,因此,由于疲劳曲线是在没有棘轮的情况下从试验中获得的,因此出现了如何解释棘轮变形(可能导致材料损伤)与疲劳损伤之间的相互作用的问题。本文研究了考虑疲劳相互作用的增长应变(增量塑性应变)的计算方法及其在设计中的应用。通过有限元分析验证了解析解的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of Target Flaw Sizes of CASS Pipe for PD Approval Using PFM Code Preface Effect of Pre-Heat Treatment on Hydrogen Concentration Behavior of y-Grooved Weld Joint Based on a Coupled Analysis of Heat Transfer-Thermal Stress-Hydrogen Diffusion Hydrogen Diffusion Concentration Behaviors for Square Groove Weld Joint Cyclic, Monotonic and Fatigue Performance of Stabilized Stainless Steel in PWR Water and Research Laboratory Interlaboratory Study for Small Punch Testing Preliminary Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1