Evolving Neural Fuzzy Network with Adaptive Feature Selection

Alisson Marques da Silva, W. Caminhas, A. Lemos, F. Gomide
{"title":"Evolving Neural Fuzzy Network with Adaptive Feature Selection","authors":"Alisson Marques da Silva, W. Caminhas, A. Lemos, F. Gomide","doi":"10.1109/ICMLA.2012.184","DOIUrl":null,"url":null,"abstract":"This paper introduces a neural fuzzy network approach for evolving system modeling. The approach uses neofuzzy neurons and a neural fuzzy structure monished with an incremental learning algorithm that includes adaptive feature selection. The feature selection mechanism starts considering one or more input variables from a given set of variables, and decides if a new variable should be added, or if an existing variable should be excluded or kept as an input. The decision process uses statistical tests and information about the current model performance. The incremental learning scheme simultaneously selects the input variables and updates the neural network weights. The weights are adjusted using a gradient-based scheme with optimal learning rate. The performance of the models obtained with the neural fuzzy modeling approach is evaluated considering weather temperature forecasting problems. Computational results show that the approach is competitive with alternatives reported in the literature, especially in on-line modeling situations where processing time and learning are critical.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper introduces a neural fuzzy network approach for evolving system modeling. The approach uses neofuzzy neurons and a neural fuzzy structure monished with an incremental learning algorithm that includes adaptive feature selection. The feature selection mechanism starts considering one or more input variables from a given set of variables, and decides if a new variable should be added, or if an existing variable should be excluded or kept as an input. The decision process uses statistical tests and information about the current model performance. The incremental learning scheme simultaneously selects the input variables and updates the neural network weights. The weights are adjusted using a gradient-based scheme with optimal learning rate. The performance of the models obtained with the neural fuzzy modeling approach is evaluated considering weather temperature forecasting problems. Computational results show that the approach is competitive with alternatives reported in the literature, especially in on-line modeling situations where processing time and learning are critical.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应特征选择的进化神经模糊网络
本文介绍了一种用于演化系统建模的神经模糊网络方法。该方法使用新模糊神经元和神经模糊结构,并采用包括自适应特征选择的增量学习算法。特征选择机制首先考虑给定变量集中的一个或多个输入变量,然后决定是否应该添加新变量,或者是否应该排除或保留现有变量作为输入。决策过程使用有关当前模型性能的统计测试和信息。增量学习方案在选择输入变量的同时更新神经网络权值。使用基于梯度的最优学习率方案来调整权重。结合天气温度预报问题,对神经模糊建模方法得到的模型的性能进行了评价。计算结果表明,该方法与文献中报道的替代方法相比具有竞争力,特别是在处理时间和学习至关重要的在线建模情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1