Polynomial Chaos Based Solution to Inverse Problems in Petroleum Reservoir Engineering

Sufia Khatoon, J. Phirani, S. S. Bahga
{"title":"Polynomial Chaos Based Solution to Inverse Problems in Petroleum Reservoir Engineering","authors":"Sufia Khatoon, J. Phirani, S. S. Bahga","doi":"10.1115/ajkfluids2019-5291","DOIUrl":null,"url":null,"abstract":"\n In reservoir simulations, model parameters such as porosity and permeability are often uncertain and therefore better estimates of these parameters are obtained by matching the simulation predictions with the production history. Bayesian inference provides a convenient way of estimating parameters of a mathematical model, starting from a probable range of parameter values and knowing the production history. Bayesian inference techniques for history matching require computationally expensive Monte Carlo simulations, which limit their use in petroleum reservoir engineering. To overcome this limitation, we perform accelerated Bayesian inference based history matching by employing polynomial chaos (PC) expansions to represent random variables and stochastic processes. As a substitute to computationally expensive Monte Carlo simulations, we use a stochastic technique based on PC expansions for propagation of uncertainty from model parameters to model predictions. The PC expansions of the stochastic variables are obtained using relatively few deterministic simulations, which are then used to calculate the probability density of the model predictions. These results are used along with the measured data to obtain a better estimate (posterior distribution) of the model parameters using the Bayes rule. We demonstrate this method for history matching using an example case of SPE1CASE2 problem of SPEs Comparative Solution Projects. We estimate the porosity and permeability of the reservoir from limited and noisy production data.","PeriodicalId":322380,"journal":{"name":"Volume 5: Multiphase Flow","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Multiphase Flow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In reservoir simulations, model parameters such as porosity and permeability are often uncertain and therefore better estimates of these parameters are obtained by matching the simulation predictions with the production history. Bayesian inference provides a convenient way of estimating parameters of a mathematical model, starting from a probable range of parameter values and knowing the production history. Bayesian inference techniques for history matching require computationally expensive Monte Carlo simulations, which limit their use in petroleum reservoir engineering. To overcome this limitation, we perform accelerated Bayesian inference based history matching by employing polynomial chaos (PC) expansions to represent random variables and stochastic processes. As a substitute to computationally expensive Monte Carlo simulations, we use a stochastic technique based on PC expansions for propagation of uncertainty from model parameters to model predictions. The PC expansions of the stochastic variables are obtained using relatively few deterministic simulations, which are then used to calculate the probability density of the model predictions. These results are used along with the measured data to obtain a better estimate (posterior distribution) of the model parameters using the Bayes rule. We demonstrate this method for history matching using an example case of SPE1CASE2 problem of SPEs Comparative Solution Projects. We estimate the porosity and permeability of the reservoir from limited and noisy production data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多项式混沌的油藏工程反问题解
在油藏模拟中,孔隙度和渗透率等模型参数通常是不确定的,因此通过将模拟预测与生产历史相匹配,可以更好地估计这些参数。贝叶斯推理提供了一种方便的方法来估计数学模型的参数,从参数值的可能范围开始,并了解生产历史。历史匹配的贝叶斯推理技术需要计算昂贵的蒙特卡罗模拟,这限制了其在油藏工程中的应用。为了克服这一限制,我们通过使用多项式混沌(PC)展开来表示随机变量和随机过程,从而实现基于贝叶斯推理的加速历史匹配。作为计算昂贵的蒙特卡罗模拟的替代品,我们使用基于PC展开的随机技术将不确定性从模型参数传播到模型预测。使用相对较少的确定性模拟获得随机变量的PC展开式,然后用于计算模型预测的概率密度。这些结果与测量数据一起使用,以使用贝叶斯规则获得模型参数的更好估计(后验分布)。我们以spe比较解决方案项目的SPE1CASE2问题为例,演示了这种历史匹配方法。我们从有限的和有噪声的生产数据中估计储层的孔隙度和渗透率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Transient Approach for Estimating Concentration of Water Droplets in Oil and Corrosion Assessment in the Oil and Gas Industry Effect of Interstage Injection on Compressor Flow Characteristic Air Entrainment and Bubble Generation by a Hydrofoil in a Turbulent Channel Flow Experimental Study of Bubble-Droplet Interactions in Improved Primary Oil Separation Effects of Liquid Viscosity on Laser-Induced Shock Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1