A. Polo, M. Salucci, S. Verzura, Zhenkun Zhou, A. Massa
{"title":"Real-Time CSI-Based Wireless Gesture Recognition for Human-Machine Interaction","authors":"A. Polo, M. Salucci, S. Verzura, Zhenkun Zhou, A. Massa","doi":"10.1109/MOCAST52088.2021.9493383","DOIUrl":null,"url":null,"abstract":"The study and the design of novel methodologies and techniques for user's activity and gesture recognition is of great interest and a hot topic in human-computer interactions. Hand gesture recognition techniques based on computer-vision have yielded impressive results, but they involve users’ privacy concerns, therefore other sensing approaches are of interest. In this work, a novel machine learning methodology based on passive electromagnetic sensing that exploits commodity Wi-Fi signals is proposed. Such an approach has been preliminary validated in a real house environment with a classification accuracy of 98%.","PeriodicalId":146990,"journal":{"name":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST52088.2021.9493383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The study and the design of novel methodologies and techniques for user's activity and gesture recognition is of great interest and a hot topic in human-computer interactions. Hand gesture recognition techniques based on computer-vision have yielded impressive results, but they involve users’ privacy concerns, therefore other sensing approaches are of interest. In this work, a novel machine learning methodology based on passive electromagnetic sensing that exploits commodity Wi-Fi signals is proposed. Such an approach has been preliminary validated in a real house environment with a classification accuracy of 98%.