Heterogeneous design methodology with configurable regular topology set for scalable Network-on-Chip designs

Wentao Chen, Depeng Jin, Lieguang Zeng
{"title":"Heterogeneous design methodology with configurable regular topology set for scalable Network-on-Chip designs","authors":"Wentao Chen, Depeng Jin, Lieguang Zeng","doi":"10.1109/ICASIC.2007.4415873","DOIUrl":null,"url":null,"abstract":"The NoC (network-on-chip) paradigm is commonly considered as an aggressive long-term approach for on-chip communication. Interconnection networks of regular topologies can be designed as IP cores to reduce the well known design-productivity gap. Therefore, regular topologies are more preferred than irregular topologies. To solve the scalability problem of the NoC designs with homogeneous regular topologies, we propose a new NoC design methodology that uses heterogeneous regular topologies. We illustrate the proposed heterogeneous design methodology with a simple configurable regular interconnect topology set, which consists of three subtopologies with different network performances and silicon overheads. Evaluation of the three subtopologies reveals that subtopologies with more connections result in better network performance and more wire complexity. The contribution of the proposed heterogeneous design methodology is that it provides a flexible way to scale the interconnection networks of regular topologies according to the traffic requirements.","PeriodicalId":120984,"journal":{"name":"2007 7th International Conference on ASIC","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASIC.2007.4415873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The NoC (network-on-chip) paradigm is commonly considered as an aggressive long-term approach for on-chip communication. Interconnection networks of regular topologies can be designed as IP cores to reduce the well known design-productivity gap. Therefore, regular topologies are more preferred than irregular topologies. To solve the scalability problem of the NoC designs with homogeneous regular topologies, we propose a new NoC design methodology that uses heterogeneous regular topologies. We illustrate the proposed heterogeneous design methodology with a simple configurable regular interconnect topology set, which consists of three subtopologies with different network performances and silicon overheads. Evaluation of the three subtopologies reveals that subtopologies with more connections result in better network performance and more wire complexity. The contribution of the proposed heterogeneous design methodology is that it provides a flexible way to scale the interconnection networks of regular topologies according to the traffic requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可配置规则拓扑集的异构设计方法,用于可扩展的片上网络设计
NoC(片上网络)范例通常被认为是片上通信的一种积极的长期方法。规则拓扑的互连网络可以设计为IP核,以减少众所周知的设计生产力差距。因此,规则拓扑比不规则拓扑更受欢迎。为了解决同构规则拓扑下NoC设计的可扩展性问题,提出了一种基于异构规则拓扑的NoC设计方法。我们用一个简单的可配置规则互连拓扑集来说明所提出的异构设计方法,该拓扑集由三个具有不同网络性能和硅开销的子拓扑组成。对这三种子拓扑的评估表明,具有更多连接的子拓扑具有更好的网络性能和更高的连接复杂度。提出的异构设计方法的贡献在于,它提供了一种灵活的方法来根据流量需求扩展规则拓扑的互连网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leakage power reduction through dual Vth assignment considering threshold voltage variation Software defined cognitive radios Multi-level signaling for energy-efficient on-chip interconnects An efficient transformation method for DFRM expansions Design, implementation and testing of an IEEE 802.11 b/g baseband chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1