H. Gjoreski, Bostjan Kaluza, M. Gams, R. Milić, M. Luštrek
{"title":"Ensembles of multiple sensors for human energy expenditure estimation","authors":"H. Gjoreski, Bostjan Kaluza, M. Gams, R. Milić, M. Luštrek","doi":"10.1145/2493432.2493517","DOIUrl":null,"url":null,"abstract":"Monitoring human energy expenditure is important in many health and sport applications, since the energy expenditure directly reflects the level of physical activity. The actual energy expenditure is unpractical to measure; hence, the field aims at estimating it by measuring the physical activity with accelerometers and other sensors. Current advanced estimators use a context-dependent approach in which a different regression model is invoked for different activities of the user. In this paper, we go a step further and use multiple contexts corresponding to multiple sensors, resulting in an ensemble of models for energy expenditure estimation. This provides a multi-view perspective, which leads to a better estimation of the energy. The proposed method was experimentally evaluated on a comprehensive set of activities where it outperformed the current state-of-the-art.","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"07 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493432.2493517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Monitoring human energy expenditure is important in many health and sport applications, since the energy expenditure directly reflects the level of physical activity. The actual energy expenditure is unpractical to measure; hence, the field aims at estimating it by measuring the physical activity with accelerometers and other sensors. Current advanced estimators use a context-dependent approach in which a different regression model is invoked for different activities of the user. In this paper, we go a step further and use multiple contexts corresponding to multiple sensors, resulting in an ensemble of models for energy expenditure estimation. This provides a multi-view perspective, which leads to a better estimation of the energy. The proposed method was experimentally evaluated on a comprehensive set of activities where it outperformed the current state-of-the-art.