{"title":"Color Features and KNN in Classification of Raw Arecanut images","authors":"S. Siddesha, S. Niranjan, V. N. Manjunath Aradhya","doi":"10.1109/ICGCIOT.2018.8753075","DOIUrl":null,"url":null,"abstract":"Arecanut is one of the important cash crops of Southern India. Classification of raw arecanut is one of the major tasks in grading, which is a vital part of crop management. In this work we proposed a model which classifies the raw arecanut. We used color histogram and color moments as features with K-NN classifier. Experiment is conducted on a dataset of 800 images of four classes using two color features and four distance measures with K-NN. A classification accuracy of 98.13% is achieved for 20% training with K value of 3 and Euclidean distance measure for color histogram features.","PeriodicalId":269682,"journal":{"name":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGCIOT.2018.8753075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Arecanut is one of the important cash crops of Southern India. Classification of raw arecanut is one of the major tasks in grading, which is a vital part of crop management. In this work we proposed a model which classifies the raw arecanut. We used color histogram and color moments as features with K-NN classifier. Experiment is conducted on a dataset of 800 images of four classes using two color features and four distance measures with K-NN. A classification accuracy of 98.13% is achieved for 20% training with K value of 3 and Euclidean distance measure for color histogram features.