TinyML Techniques for running Machine Learning models on Edge Devices

Arijit Mukherjee, A. Ukil, Swarnava Dey, Gitesh Kulkarni
{"title":"TinyML Techniques for running Machine Learning models on Edge Devices","authors":"Arijit Mukherjee, A. Ukil, Swarnava Dey, Gitesh Kulkarni","doi":"10.1145/3564121.3564812","DOIUrl":null,"url":null,"abstract":"Resource-constrained platforms such as micro-controllers are the workhorses in embedded systems, being deployed to capture data from sensors and send the collected data to cloud for processing. Recently, a great interest is seen in the research community and industry to use these devices for performing Artificial Intelligence/Machine Learning (AI/ML) inference tasks in the areas of computer vision, natural language processing, machine monitoring etc. leading to the realization of embedded intelligence at the edge. This task is challenging and needs a significant knowledge of AI/ML applications, algorithms, and computer architecture and their interactions to achieve the desired performance. In this tutorial we cover a few aspects that will help embedded systems designers and AI/ML engineers and scientists to deploy the AI/ML models on the Tiny Edge Devices at an optimum level of performance.","PeriodicalId":166150,"journal":{"name":"Proceedings of the Second International Conference on AI-ML Systems","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Conference on AI-ML Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3564121.3564812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Resource-constrained platforms such as micro-controllers are the workhorses in embedded systems, being deployed to capture data from sensors and send the collected data to cloud for processing. Recently, a great interest is seen in the research community and industry to use these devices for performing Artificial Intelligence/Machine Learning (AI/ML) inference tasks in the areas of computer vision, natural language processing, machine monitoring etc. leading to the realization of embedded intelligence at the edge. This task is challenging and needs a significant knowledge of AI/ML applications, algorithms, and computer architecture and their interactions to achieve the desired performance. In this tutorial we cover a few aspects that will help embedded systems designers and AI/ML engineers and scientists to deploy the AI/ML models on the Tiny Edge Devices at an optimum level of performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在边缘设备上运行机器学习模型的TinyML技术
资源有限的平台,如微控制器,是嵌入式系统的主力,用于从传感器捕获数据,并将收集到的数据发送到云端进行处理。最近,研究界和工业界对使用这些设备在计算机视觉、自然语言处理、机器监控等领域执行人工智能/机器学习(AI/ML)推理任务产生了极大的兴趣,从而实现了边缘的嵌入式智能。这项任务具有挑战性,需要对AI/ML应用程序、算法、计算机体系结构及其相互作用有深入的了解,才能实现预期的性能。在本教程中,我们将介绍一些方面,这些方面将帮助嵌入式系统设计师和AI/ML工程师和科学家以最佳性能水平在Tiny Edge设备上部署AI/ML模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Planning System for Smart Charging of Electric Fleets CluSpa: Computation Reduction in CNN Inference by exploiting Clustering and Sparsity Acceleration-aware, Retraining-free Evolutionary Pruning for Automated Fitment of Deep Learning Models on Edge Devices Patch-wise Features for Blur Image Classification Identification of Causal Dependencies in Multivariate Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1