Empirical study of particle swarm optimization

Yuhui Shi, R. Eberhart
{"title":"Empirical study of particle swarm optimization","authors":"Yuhui Shi, R. Eberhart","doi":"10.1109/CEC.1999.785511","DOIUrl":null,"url":null,"abstract":"We empirically study the performance of the particle swarm optimizer (PSO). Four different benchmark functions with asymmetric initial range settings are selected as testing functions. The experimental results illustrate the advantages and disadvantages of the PSO. Under all the testing cases, the PSO always converges very quickly towards the optimal positions but may slow its convergence speed when it is near a minimum. Nevertheless, the experimental results show that the PSO is a promising optimization method and a new approach is suggested to improve PSO's performance near the optima, such as using an adaptive inertia weight.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4215","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.785511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4215

Abstract

We empirically study the performance of the particle swarm optimizer (PSO). Four different benchmark functions with asymmetric initial range settings are selected as testing functions. The experimental results illustrate the advantages and disadvantages of the PSO. Under all the testing cases, the PSO always converges very quickly towards the optimal positions but may slow its convergence speed when it is near a minimum. Nevertheless, the experimental results show that the PSO is a promising optimization method and a new approach is suggested to improve PSO's performance near the optima, such as using an adaptive inertia weight.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粒子群优化的实证研究
本文对粒子群优化器(PSO)的性能进行了实证研究。选取初始极差设置不对称的四个不同基准函数作为测试函数。实验结果说明了粒子群算法的优缺点。在所有的测试用例下,粒子群算法总是向最优位置快速收敛,但在接近最小值时收敛速度可能会减慢。然而,实验结果表明,粒子群算法是一种很有前途的优化方法,并提出了一种新的方法来提高粒子群算法在最优点附近的性能,如使用自适应惯性权值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of a characteristic bimodal convergence-time/mutation-rate feature in evolutionary search Classifier systems evolving multi-agent system with distributed elitism A unified model of non-panmictic population structures in evolutionary algorithms Control of autonomous robots using fuzzy logic controllers tuned by genetic algorithms Oil reservoir production forecasting with uncertainty estimation using genetic algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1