Electromagnetic Vortex Imaging Based on Multiple Measurement Vectors in Low SNR Condition

Rui Li, Ying Luo, Qun Zhang, Dan Wang, Ying Liang, Xiao-yu Qu
{"title":"Electromagnetic Vortex Imaging Based on Multiple Measurement Vectors in Low SNR Condition","authors":"Rui Li, Ying Luo, Qun Zhang, Dan Wang, Ying Liang, Xiao-yu Qu","doi":"10.1109/COMPEM.2019.8778927","DOIUrl":null,"url":null,"abstract":"Vortex electromagnetic wave with orbital angular momentum (OAM) has been a great application prospect in the radar imaging field. Due to the use of sparse recovery theory, downsampling makes electromagnetic (EM) vortex imaging suffer from a low signal to noise ratio (SNR). Therefore, the sparse representation model based on multiple measurement vectors (MMV) is proposed, and the maximal measurement number of MMV is derived. Simulation results indicate that the proposed model can increase recovery correct probability, and obtain better imaging results in low SNR condition.","PeriodicalId":342849,"journal":{"name":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2019.8778927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Vortex electromagnetic wave with orbital angular momentum (OAM) has been a great application prospect in the radar imaging field. Due to the use of sparse recovery theory, downsampling makes electromagnetic (EM) vortex imaging suffer from a low signal to noise ratio (SNR). Therefore, the sparse representation model based on multiple measurement vectors (MMV) is proposed, and the maximal measurement number of MMV is derived. Simulation results indicate that the proposed model can increase recovery correct probability, and obtain better imaging results in low SNR condition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低信噪比条件下基于多测量向量的电磁涡流成像
具有轨道角动量的涡旋电磁波在雷达成像领域具有广阔的应用前景。由于采用稀疏恢复理论,下采样使得电磁涡流成像具有较低的信噪比。为此,提出了基于多测量向量(MMV)的稀疏表示模型,并推导了MMV的最大测量数。仿真结果表明,该模型可以提高恢复正确率,在低信噪比条件下获得较好的成像效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Artificial Neural Network for Electromagnetic Source Reconstruction Liquid Crystal-Based Polarization Reconfigurable Cross-Slot Fed Patch Antenna An Intra Coding Algorithm Of HEVC That Suitable For VLSI Implementation A Novel Millimeter Wave Multiple Beam Antenna with SIW Butler Matrix A Sparse Imaging-based Single Channel Slow-Moving Target Detection Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1