Time-Series Data Regression Modeling Method for Efficient Operation of Virtual Environments

Yuriko Takahashi, Shigeto Suzuki, Takuji Yamamoto, Hiroyuki Fukuda, M. Oguchi
{"title":"Time-Series Data Regression Modeling Method for Efficient Operation of Virtual Environments","authors":"Yuriko Takahashi, Shigeto Suzuki, Takuji Yamamoto, Hiroyuki Fukuda, M. Oguchi","doi":"10.1109/IMCOM51814.2021.9377355","DOIUrl":null,"url":null,"abstract":"In recent years, efforts have been made to reduce the number of servers by virtualizing servers to improve their utilization rate. In this approach, it is necessary to predict and control the CPU utilization of all the virtual servers because the performance of the virtual servers may deteriorate due to the over-committed state in which the servers are allocated more CPUs than their own CPU resources. In this study, we discuss a regression modeling method for time-series data to generate a general-purpose deep-learning prediction model of the CPU utilization of virtual servers. After exploring methods, we confirmed that the number of data used during retraining could be reduced by extracting the time series data by the length required for training and using the data randomly after subdivision.","PeriodicalId":275121,"journal":{"name":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM51814.2021.9377355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, efforts have been made to reduce the number of servers by virtualizing servers to improve their utilization rate. In this approach, it is necessary to predict and control the CPU utilization of all the virtual servers because the performance of the virtual servers may deteriorate due to the over-committed state in which the servers are allocated more CPUs than their own CPU resources. In this study, we discuss a regression modeling method for time-series data to generate a general-purpose deep-learning prediction model of the CPU utilization of virtual servers. After exploring methods, we confirmed that the number of data used during retraining could be reduced by extracting the time series data by the length required for training and using the data randomly after subdivision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
虚拟环境高效运行的时间序列数据回归建模方法
近年来,人们通过虚拟化服务器来减少服务器的数量,从而提高服务器的利用率。在这种方法中,有必要预测和控制所有虚拟服务器的CPU利用率,因为虚拟服务器的性能可能会因服务器分配的CPU超过其自身CPU资源的过度使用状态而下降。在本研究中,我们讨论了一种时间序列数据的回归建模方法,以生成虚拟服务器CPU利用率的通用深度学习预测模型。通过对方法的探索,我们确定了按照训练所需的长度提取时间序列数据,并对数据进行细分后随机使用,可以减少再训练过程中使用的数据量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a Partially Verifiable Multi-party Multi-argument Zero-knowledge Proof EnvBERT: Multi-Label Text Classification for Imbalanced, Noisy Environmental News Data Method for Changing Users' Attitudes Towards Fashion Styling by Showing Evaluations After Coordinate Selection The Analysis of Web Search Snippets Displaying User's Knowledge An Energy Management System with Edge Computing for Industrial Facility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1