Numerical Simulations of Roughness Scale Effects on Bistatic Ocean Scattering

Yanlei Du, Jian Yang, Shurun Tan, Xiaofeng Yang, J. Wang, Wenting Ma
{"title":"Numerical Simulations of Roughness Scale Effects on Bistatic Ocean Scattering","authors":"Yanlei Du, Jian Yang, Shurun Tan, Xiaofeng Yang, J. Wang, Wenting Ma","doi":"10.1109/NEMO49486.2020.9343567","DOIUrl":null,"url":null,"abstract":"The effects of roughness scale on bistatic radar scattering from an ocean surface at L-band are studied using the second order small slope approximation (SSA-II) and the method of moments (MoM). Ocean roughness is represented and varied using different ranges of the KHCC03 spectrum. The criteria of full spectrum truncation are also given. Numerical results are illustrated in fully bistatic configuration at 1.26 GHz. Simulations indicate that short waves with wavenumber larger than 316 rad/m (around 12 wavenumbers of L-band incidence wave) have little effect on ocean scattering. The large-scale waves put more impacts on scattering in the forward directions, especially for large incidence angles. The effects of large-scale roughness on ocean scattering are in general smaller at VV-pol than HH-pol. The bistatic scattering at cross polarizations is less sensitive to the roughness scale as compared to the co-polarizations. For numerical simulations of ocean scattering with incidence angle less than 60°, using small surface profiles with size about 1/6 of those accounting for full spectrum yields results of bistatic scattering coefficients with errors less than 2dB.","PeriodicalId":305562,"journal":{"name":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO49486.2020.9343567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of roughness scale on bistatic radar scattering from an ocean surface at L-band are studied using the second order small slope approximation (SSA-II) and the method of moments (MoM). Ocean roughness is represented and varied using different ranges of the KHCC03 spectrum. The criteria of full spectrum truncation are also given. Numerical results are illustrated in fully bistatic configuration at 1.26 GHz. Simulations indicate that short waves with wavenumber larger than 316 rad/m (around 12 wavenumbers of L-band incidence wave) have little effect on ocean scattering. The large-scale waves put more impacts on scattering in the forward directions, especially for large incidence angles. The effects of large-scale roughness on ocean scattering are in general smaller at VV-pol than HH-pol. The bistatic scattering at cross polarizations is less sensitive to the roughness scale as compared to the co-polarizations. For numerical simulations of ocean scattering with incidence angle less than 60°, using small surface profiles with size about 1/6 of those accounting for full spectrum yields results of bistatic scattering coefficients with errors less than 2dB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粗糙度尺度对双基地海洋散射影响的数值模拟
采用二阶小斜率近似(SSA-II)和矩量法(MoM)研究了粗糙度尺度对海洋表面l波段双基地雷达散射的影响。利用KHCC03光谱的不同范围来表示和变化海洋粗糙度。给出了全谱截断的判据。数值结果说明了在1.26 GHz完全双基地配置。模拟结果表明,波数大于316 rad/m的短波(约为l波段入射波的12个波数)对海洋散射的影响较小。大尺度波对正向散射的影响更大,尤其是大入射角时。在VV-pol中,大尺度粗糙度对海洋散射的影响通常小于HH-pol。与共极化相比,交叉极化双基地散射对粗糙度尺度的敏感性较低。对于入射角小于60°的海洋散射数值模拟,采用占全光谱1/6左右的小表面剖面,可以得到误差小于2dB的双基地散射系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Wideband Millimeter Wave E-shape Antenna in Package with Embedded Wafer Level Ball Grid Array Technology Mechanical and Electromagnetic Analysis of Flexible Fractal Interconnect Structures under High Frequency An Artificial Neural Network Based Design of Triple-Band Microstrip Patch Antenna for WLAN Applications A Regularization Scheme Based on Gaussian Mixture Model for EM Data Inversion Design of a Circularly Polarized Metasurface Antenna with Characteristic Mode Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1