Artificial neural networks based steady state security analysis of power systems

M. Shukla, M. Abdelrahman
{"title":"Artificial neural networks based steady state security analysis of power systems","authors":"M. Shukla, M. Abdelrahman","doi":"10.1109/SSST.2004.1295661","DOIUrl":null,"url":null,"abstract":"The focus of this paper is to present an artificial neural network based methodology to assess the steady state security of a power system. The security of the system is assessed on the basis of the voltage profile at each bus with reference to changes in generation and load in the system. The input to the neural network is the voltage level at each bus. The ANN used is a feedforward multilayer network trained with a backpropagation algorithm. The output of the ANN classifies the security of the power system into normal, alert and emergency states. An IEEE 14-bus system is considered to demonstrate the results of the methodology.","PeriodicalId":309617,"journal":{"name":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2004.1295661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The focus of this paper is to present an artificial neural network based methodology to assess the steady state security of a power system. The security of the system is assessed on the basis of the voltage profile at each bus with reference to changes in generation and load in the system. The input to the neural network is the voltage level at each bus. The ANN used is a feedforward multilayer network trained with a backpropagation algorithm. The output of the ANN classifies the security of the power system into normal, alert and emergency states. An IEEE 14-bus system is considered to demonstrate the results of the methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的电力系统稳态安全分析
本文的重点是提出一种基于人工神经网络的电力系统稳态安全评估方法。系统的安全性是根据各母线的电压分布,参考系统中发电和负载的变化来评估的。神经网络的输入是每个母线上的电压水平。使用的人工神经网络是用反向传播算法训练的前馈多层网络。人工神经网络的输出将电力系统的安全状态分为正常状态、警报状态和紧急状态。一个IEEE 14总线系统被认为是证明该方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clutter complexity analysis of hyper-spectral bands Performance analysis of UNIX user datagram protocol implementations On the complexity and accuracy of motion estimation using Lie operators Real time modeling and control of circulating fluidized bed Vehicle lateral control using a double integrator control strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1