{"title":"A probabilistic algorithm for k-SAT and constraint satisfaction problems","authors":"U. Schöning","doi":"10.1109/SFFCS.1999.814612","DOIUrl":null,"url":null,"abstract":"We present a simple probabilistic algorithm for solving k-SAT and more generally, for solving constraint satisfaction problems (CSP). The algorithm follows a simple local search paradigm (S. Minton et al., 1992): randomly guess an initial assignment and then, guided by those clauses (constraints) that are not satisfied, by successively choosing a random literal from such a clause and flipping the corresponding bit, try to find a satisfying assignment. If no satisfying assignment is found after O(n) steps, start over again. Our analysis shows that for any satisfiable k-CNF-formula with n variables this process has to be repeated only t times, on the average, to find a satisfying assignment, where t is within a polynomial factor of (2(1-1/k))/sup n/. This is the fastest (and also the simplest) algorithm for 3-SAT known up to date. We consider also the more general case of a CSP with n variables, each variable taking at most d values, and constraints of order l, and analyze the complexity of the corresponding (generalized) algorith m. It turns out that any CSP can be solved with complexity at most (d/spl middot/(1-1/l)+/spl epsiv/)/sup n/.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"470","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 470
Abstract
We present a simple probabilistic algorithm for solving k-SAT and more generally, for solving constraint satisfaction problems (CSP). The algorithm follows a simple local search paradigm (S. Minton et al., 1992): randomly guess an initial assignment and then, guided by those clauses (constraints) that are not satisfied, by successively choosing a random literal from such a clause and flipping the corresponding bit, try to find a satisfying assignment. If no satisfying assignment is found after O(n) steps, start over again. Our analysis shows that for any satisfiable k-CNF-formula with n variables this process has to be repeated only t times, on the average, to find a satisfying assignment, where t is within a polynomial factor of (2(1-1/k))/sup n/. This is the fastest (and also the simplest) algorithm for 3-SAT known up to date. We consider also the more general case of a CSP with n variables, each variable taking at most d values, and constraints of order l, and analyze the complexity of the corresponding (generalized) algorith m. It turns out that any CSP can be solved with complexity at most (d/spl middot/(1-1/l)+/spl epsiv/)/sup n/.