Design of new soft sensors based on PCA, genetic algorithm and neural network for parameters estimation of a petroleum reservoir

H. Alaei
{"title":"Design of new soft sensors based on PCA, genetic algorithm and neural network for parameters estimation of a petroleum reservoir","authors":"H. Alaei","doi":"10.1109/ICCIAUTOM.2011.6356768","DOIUrl":null,"url":null,"abstract":"A new set of soft sensors is presented, based on principal component analysis (PCA), genetic algorithm (GA) and artificial neural network (ANN) methodologies for parameters estimation of a petroleum reservoir. The crude diagrams of reservoir parameters provide valuable evaluation for petro-physical parameters. These parameters, however, are usually difficult to measure due to limitations insights on cost, reliability considerations, inappropriate instrument maintenance and sensor failures. PCA and genetic algorithm is utilized to develop new soft sensors to incorporate reliability and prediction capabilities of ANN. Genetic algorithms are used to decide the initial weights of the gradient decent methods so that all the initial weights can be searched intelligently. The genetic operators and parameters are carefully designed and set avoiding premature convergence and permutation problems. The proposed algorithm combines the local searching ability of the gradient-based back-propagation (BP) strategy with the global searching ability of genetic algorithms in the PCA subspaces. The developed soft sensors are applied to reconstruct parameters of Marun reservoir located in Ahwaz, Iran, by utilizing the available geophysical well log data.","PeriodicalId":438427,"journal":{"name":"The 2nd International Conference on Control, Instrumentation and Automation","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Control, Instrumentation and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6356768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new set of soft sensors is presented, based on principal component analysis (PCA), genetic algorithm (GA) and artificial neural network (ANN) methodologies for parameters estimation of a petroleum reservoir. The crude diagrams of reservoir parameters provide valuable evaluation for petro-physical parameters. These parameters, however, are usually difficult to measure due to limitations insights on cost, reliability considerations, inappropriate instrument maintenance and sensor failures. PCA and genetic algorithm is utilized to develop new soft sensors to incorporate reliability and prediction capabilities of ANN. Genetic algorithms are used to decide the initial weights of the gradient decent methods so that all the initial weights can be searched intelligently. The genetic operators and parameters are carefully designed and set avoiding premature convergence and permutation problems. The proposed algorithm combines the local searching ability of the gradient-based back-propagation (BP) strategy with the global searching ability of genetic algorithms in the PCA subspaces. The developed soft sensors are applied to reconstruct parameters of Marun reservoir located in Ahwaz, Iran, by utilizing the available geophysical well log data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PCA、遗传算法和神经网络的油气储层参数估计软传感器设计
提出了一套基于主成分分析(PCA)、遗传算法(GA)和人工神经网络(ANN)方法的油气储层参数估计软传感器。储层参数粗图为储层物性参数评价提供了有价值的依据。然而,由于对成本、可靠性考虑、仪器维护不当和传感器故障的限制,这些参数通常难以测量。利用主成分分析和遗传算法开发新的软传感器,结合人工神经网络的可靠性和预测能力。采用遗传算法确定梯度体面法的初始权值,实现对所有初始权值的智能搜索。遗传算子和遗传参数经过精心设计和设置,避免了早熟收敛和置换问题。该算法将基于梯度的反向传播(BP)策略的局部搜索能力与遗传算法在PCA子空间中的全局搜索能力相结合。利用现有的地球物理测井资料,将开发的软传感器应用于伊朗Ahwaz Marun油藏的参数重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal design of adaptive interval type-2 fuzzy sliding mode control using Genetic algorithm Constrained model predictive control of PEM fuel cell with guaranteed stability Optimal control of an autonomous underwater vehicle using IPSO_SQP algorithm Design of an on-line recurrent wavelet network controller for a class of nonlinear systems Exact pupil and iris boundary detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1