Travel pattern modelling and future travel behaviour prediction based on GMM and GPR

Wen Shen, Zhihua Wei, Chao Yang, Renxian Zhang
{"title":"Travel pattern modelling and future travel behaviour prediction based on GMM and GPR","authors":"Wen Shen, Zhihua Wei, Chao Yang, Renxian Zhang","doi":"10.1504/IJSPM.2018.095887","DOIUrl":null,"url":null,"abstract":"How to use historical data of public smart card to predict user behaviour attracts a lot of attention. This paper aims at modelling travel patterns and predicting future travel behaviour of metro system smart card holders. We apply Gaussian mixture model (GMM) on time series to model user behaviour. We propose a new method based on the perplexity for finite GMM and use expectation-maximisation (EM) algorithm to estimate parameters of GMM. In order to predict the future travel behaviour, we introduce the Gaussian process regression (GPR) to define distributions over GMM, which can not only tell the probability of travelling at a certain moment but also tell the reliability of the prediction. Experimental results show that our whole system in the centre of GMM and GPR can effectively mine the hidden knowledge of historical data of smart card, and thus model the travel patterns and predict future travel behaviour.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSPM.2018.095887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

How to use historical data of public smart card to predict user behaviour attracts a lot of attention. This paper aims at modelling travel patterns and predicting future travel behaviour of metro system smart card holders. We apply Gaussian mixture model (GMM) on time series to model user behaviour. We propose a new method based on the perplexity for finite GMM and use expectation-maximisation (EM) algorithm to estimate parameters of GMM. In order to predict the future travel behaviour, we introduce the Gaussian process regression (GPR) to define distributions over GMM, which can not only tell the probability of travelling at a certain moment but also tell the reliability of the prediction. Experimental results show that our whole system in the centre of GMM and GPR can effectively mine the hidden knowledge of historical data of smart card, and thus model the travel patterns and predict future travel behaviour.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GMM和GPR的出行模式建模与未来出行行为预测
如何利用公共智能卡的历史数据来预测用户的使用行为,引起了人们的广泛关注。本文旨在对地铁系统智能卡持有者的出行模式进行建模,并对其未来的出行行为进行预测。我们在时间序列上应用高斯混合模型(GMM)来模拟用户行为。提出了一种基于困惑度的有限GMM的新方法,并使用期望最大化(EM)算法来估计GMM的参数。为了预测未来的旅行行为,我们引入高斯过程回归(GPR)来定义GMM上的分布,该分布不仅可以告诉某一时刻的旅行概率,还可以告诉预测的可靠性。实验结果表明,以GMM和GPR为中心的整个系统可以有效地挖掘智能卡历史数据中的隐藏知识,从而对智能卡的出行模式进行建模并预测未来的出行行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic jam prediction using hazardous material transportation management simulation Evaluating the impact of shared situational awareness on combat effectiveness in symmetric engagements Realistic scenario modelling for building power supply and distribution system based on non-intrusive load monitoring Acoustic performance and modal analysis for the muffler of a four-stroke three-cylinder inline spark ignition engine Utilising scenario-based simulation modelling to optimise aircraft inspection scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1