Y. Hamasuna, Y. Endo, Yasushi Hasegawa, S. Miyamoto
{"title":"Two Clustering Algorithms for Data with Tolerance based on Hard c-Means","authors":"Y. Hamasuna, Y. Endo, Yasushi Hasegawa, S. Miyamoto","doi":"10.1109/FUZZY.2007.4295449","DOIUrl":null,"url":null,"abstract":"Two clustering algorithms that handle data with tolerance are proposed. One is based on hard c-means while the other uses the learning vector quantization. The concept of the tolerance includes. First, the concept of tolerance which implies errors, ranges and the loss of attribute of data is described. Optimization problems that take the tolerance into account are formulated. Since the Kuhn-Tucker condition give a unique and explicit optimal solution, an alternate minimization algorithm and a learning algorithm are constructed. Moreover, the effectiveness of the proposed algorithms is verified through numerical examples.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Two clustering algorithms that handle data with tolerance are proposed. One is based on hard c-means while the other uses the learning vector quantization. The concept of the tolerance includes. First, the concept of tolerance which implies errors, ranges and the loss of attribute of data is described. Optimization problems that take the tolerance into account are formulated. Since the Kuhn-Tucker condition give a unique and explicit optimal solution, an alternate minimization algorithm and a learning algorithm are constructed. Moreover, the effectiveness of the proposed algorithms is verified through numerical examples.