Fermentation Level Classification of Cross Cut Cacao Beans Using k-NN Algorithm

Randy E. Angelia, N. Linsangan
{"title":"Fermentation Level Classification of Cross Cut Cacao Beans Using k-NN Algorithm","authors":"Randy E. Angelia, N. Linsangan","doi":"10.1145/3309129.3309142","DOIUrl":null,"url":null,"abstract":"In chocolate production, post-harvest procedure is one of the most critical factors. Fermentation is a vital procedure to consider since exact generation of acid contemplate to aroma and quality of the final product. This innovative study aims to classify the quality of the cacao beans after the post-harvest procedures. Classified sample beans from partner cacao trader were analyzed and became data sets of the device. Photographs are taken to the subjects and undergo image processing procedure then through k-Nearest Neighbors Algorithm (k-NN). Beans are classified to be well-fermented under fermentation and over-fermentation process. Function test and statistical analysis using confusion matrix revealed 97.22 percent accuracy in analyzing well-fermented beans, 92.59 percent accuracy in under fermented, 75 percent in over-fermented and 80 percent in analyzing unknowns. These results generated 92.50 percent overall accuracy of the device.","PeriodicalId":326530,"journal":{"name":"Proceedings of the 5th International Conference on Bioinformatics Research and Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3309129.3309142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In chocolate production, post-harvest procedure is one of the most critical factors. Fermentation is a vital procedure to consider since exact generation of acid contemplate to aroma and quality of the final product. This innovative study aims to classify the quality of the cacao beans after the post-harvest procedures. Classified sample beans from partner cacao trader were analyzed and became data sets of the device. Photographs are taken to the subjects and undergo image processing procedure then through k-Nearest Neighbors Algorithm (k-NN). Beans are classified to be well-fermented under fermentation and over-fermentation process. Function test and statistical analysis using confusion matrix revealed 97.22 percent accuracy in analyzing well-fermented beans, 92.59 percent accuracy in under fermented, 75 percent in over-fermented and 80 percent in analyzing unknowns. These results generated 92.50 percent overall accuracy of the device.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于k-NN算法的横切可可豆发酵水平分类
在巧克力生产中,收获后工序是最关键的因素之一。发酵是一个重要的过程,因为酸的确切产生关系到最终产品的香气和质量。这项创新的研究旨在对采收后的可可豆进行质量分类。对合作伙伴可可贸易商的分类样本豆进行分析,成为该装置的数据集。将照片拍摄给受试者,然后通过k-近邻算法(k-NN)进行图像处理。豆类分为发酵过程中发酵良好的和过度发酵的。功能测试和混淆矩阵统计分析结果表明,发酵良好的准确率为97.22%,发酵不足的准确率为92.59%,过度发酵的准确率为75%,未知的准确率为80%。这些结果产生了92.50%的设备整体准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the 5th International Conference on Bioinformatics Research and Applications A Study on Optimizing MarkDuplicate in Genome Sequencing Pipeline Biotable: A Tool to Extract Semantic Structure of Table in Biology Literature Screening Feasibility and Comparison of Deep Artificial Neural Networks Algorithms for Classification of Skin Lesions Identification of Viable Embryos Using Deep Learning for Medical Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1