Minimization of multivalued multithreshold perceptrons using genetic algorithms

A. Ngom, I. Stojmenovic, Z. Obradovic
{"title":"Minimization of multivalued multithreshold perceptrons using genetic algorithms","authors":"A. Ngom, I. Stojmenovic, Z. Obradovic","doi":"10.1109/ISMVL.1998.679434","DOIUrl":null,"url":null,"abstract":"We address the problem of computing and learning multivalued multithreshold perceptrons. Every n-input X-valued logic function can be implemented using a (k, s)-perceptron, for some number of thresholds s. We propose a genetic algorithm to search for an optimal (k, s)-perceptron that efficiently realizes a given multiple-valued logic function, that is to minimize the number of thresholds. Experimental results show that the genetic algorithm find optimal solutions in most cases.","PeriodicalId":377860,"journal":{"name":"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1998.679434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We address the problem of computing and learning multivalued multithreshold perceptrons. Every n-input X-valued logic function can be implemented using a (k, s)-perceptron, for some number of thresholds s. We propose a genetic algorithm to search for an optimal (k, s)-perceptron that efficiently realizes a given multiple-valued logic function, that is to minimize the number of thresholds. Experimental results show that the genetic algorithm find optimal solutions in most cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用遗传算法最小化多值多阈值感知器
我们解决了计算和学习多值多阈值感知器的问题。对于一定数量的阈值,每个n输入的x值逻辑函数都可以使用(k, s)感知器来实现。我们提出了一种遗传算法来搜索最优的(k, s)感知器,该感知器可以有效地实现给定的多值逻辑函数,即最小化阈值的数量。实验结果表明,遗传算法在大多数情况下都能找到最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel nonlinear synapse neuron model guaranteeing a global minimum-Wavelet Neuron Minimal test set generation for fault diagnosis in R-valued PLAs A finite basis of the set of all monotone partial functions defined over a finite poset Application of neuron-MOS to current-mode multi-valued logic circuits Upper and lower bounds on the number of fuzzy/c switching functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1