The Optimal Workforce Staffing Solutions With Random Patient Demand in Healthcare Settings

A. Kolker
{"title":"The Optimal Workforce Staffing Solutions With Random Patient Demand in Healthcare Settings","authors":"A. Kolker","doi":"10.4018/978-1-5225-2255-3.CH322","DOIUrl":null,"url":null,"abstract":"Staffing planning is paramount for cost-efficient workforce management. An accurate assessment of the required staffing level for the specific time period is an integral part of the hospital budgeting and planning process. Daily fluctuations of patient census create staffing planning challenges to many organizations. There is a growing trend for hospitals to use data analytics for determining the optimal staffing solutions. The dynamic nature of the staffing process creates two types of issues: (1) overstaffing vs. the planned budgeted level, which hurts operations margins, or (2) understaffing, which requires costly overtime and/or premium pay that also hurts margins and causes substandard quality of care. The goal of this chapter is providing an overview and examples of application of the methodology called the “newsvendor” framework. This methodology helps to develop the optimal nursing and other skill mix staffing solutions that minimize the total cost of over- and understaffing occurrences within the specified time period for the units with random patient census fluctuations.","PeriodicalId":269471,"journal":{"name":"Advanced Methodologies and Technologies in Medicine and Healthcare","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Methodologies and Technologies in Medicine and Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-2255-3.CH322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Staffing planning is paramount for cost-efficient workforce management. An accurate assessment of the required staffing level for the specific time period is an integral part of the hospital budgeting and planning process. Daily fluctuations of patient census create staffing planning challenges to many organizations. There is a growing trend for hospitals to use data analytics for determining the optimal staffing solutions. The dynamic nature of the staffing process creates two types of issues: (1) overstaffing vs. the planned budgeted level, which hurts operations margins, or (2) understaffing, which requires costly overtime and/or premium pay that also hurts margins and causes substandard quality of care. The goal of this chapter is providing an overview and examples of application of the methodology called the “newsvendor” framework. This methodology helps to develop the optimal nursing and other skill mix staffing solutions that minimize the total cost of over- and understaffing occurrences within the specified time period for the units with random patient census fluctuations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医疗保健环境中具有随机患者需求的最佳劳动力配置解决方案
人员配置计划对于具有成本效益的劳动力管理至关重要。准确评估特定时期所需的人员编制水平是医院预算编制和规划过程的一个组成部分。患者人口普查的日常波动给许多组织带来了人员配置规划的挑战。医院越来越倾向于使用数据分析来确定最佳的人员配置解决方案。人员配备过程的动态性产生了两种类型的问题:(1)人员配备过多与计划预算水平相比,这会损害运营利润;(2)人员配备不足,这需要昂贵的加班和/或额外支付,这也会损害利润并导致护理质量不合格。本章的目标是提供一个被称为“报贩”框架的方法论应用的概述和例子。该方法有助于制定最佳护理和其他技能组合人员配置解决方案,最大限度地减少在患者人口普查随机波动的单位在指定时间段内人员配备过多和不足的总成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bioinformatics Building Gene Networks by Analyzing Gene Expression Profiles Concerns and Challenges of Cloud Platforms for Bioinformatics Technology Design and Routes for Tool Appropriation in Medical Practices Use of Technology in Problem-Based Learning in Health Science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1