Performance improvement using average query fired to bins of four statistical moments for CBIR

H. B. Kekre, Kavita Sonawane
{"title":"Performance improvement using average query fired to bins of four statistical moments for CBIR","authors":"H. B. Kekre, Kavita Sonawane","doi":"10.1109/ICCICT.2012.6398222","DOIUrl":null,"url":null,"abstract":"This paper explains the effectiveness of average feature vector used as compared to a single query image feature vector to be fired to the CBIR designed using bins approach based on the partitioning of the equalized histograms of R, G and B planes of images. The feature vectors of dimension 27 are extracted into bins holding the statistical information of first 4 centralize absolute moments of R, G and B colors separately. Three different similarity measures are used in this paper for comparing the query image and database images namely Absolute distance, Euclidean distance and Cosine correlation distance. Experimentation of this approach is demonstrated for image database of 2000 BMP images containing 100 images from 20 different classes. Three parameters are used namely PRCP, LSRR and Longest String to evaluate the performance of the approaches used in this paper for CBIR.","PeriodicalId":319467,"journal":{"name":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICT.2012.6398222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper explains the effectiveness of average feature vector used as compared to a single query image feature vector to be fired to the CBIR designed using bins approach based on the partitioning of the equalized histograms of R, G and B planes of images. The feature vectors of dimension 27 are extracted into bins holding the statistical information of first 4 centralize absolute moments of R, G and B colors separately. Three different similarity measures are used in this paper for comparing the query image and database images namely Absolute distance, Euclidean distance and Cosine correlation distance. Experimentation of this approach is demonstrated for image database of 2000 BMP images containing 100 images from 20 different classes. Three parameters are used namely PRCP, LSRR and Longest String to evaluate the performance of the approaches used in this paper for CBIR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用CBIR的四个统计时刻的平均查询来提高性能
本文解释了使用平均特征向量与单个查询图像特征向量相比的有效性,该特征向量将被发射到使用基于图像R, G和B平面的均衡直方图划分的bin方法设计的CBIR中。将27维特征向量提取到分别保存R、G、B颜色的前4个中心化绝对矩统计信息的箱子中。本文使用三种不同的相似性度量来比较查询图像和数据库图像,即绝对距离、欧几里得距离和余弦相关距离。在包含20个不同类别的100幅BMP图像的2000幅图像数据库中进行了实验。使用PRCP、LSRR和Longest String三个参数来评估本文所采用的CBIR方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compression strategy for handwritten gray level document images EKSS: An efficient approach for similarity search A semi-blind image watermarking based on Discrete Wavelet Transform and Secret Sharing Neuro Analytical hierarchy process (NAHP) approach for CAD/CAM/CIM tool selection in the context of small manufacturing industries ‘Robot-Cloud’: A framework to assist heterogeneous low cost robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1