Fast Adaptive Cross Tubal Tensor Approximation

S. Ahmadi-Asl, A. Phan, A. Cichocki, Ashish Jha, Anastasia Sozykina, Jun Wang, I. Oseledets
{"title":"Fast Adaptive Cross Tubal Tensor Approximation","authors":"S. Ahmadi-Asl, A. Phan, A. Cichocki, Ashish Jha, Anastasia Sozykina, Jun Wang, I. Oseledets","doi":"10.1109/SSP53291.2023.10208018","DOIUrl":null,"url":null,"abstract":"This paper deals with proposing a new efficient adaptive algorithm for the computation of tensor SVD (t-SVD). The proposed algorithm can estimate the tubal-rank of a given third-order tensor and the corresponding low tubal-rank approximation given an approximation tolerance. The main advantage of the proposed algorithm is using only a part of lateral and a horizontal slices at each iteration in its computations. So, it is applicable for decomposing large-scale data tensors. Simulations on synthetics and real-world datasets are provided and in some cases, we achieve more than one order of magnitude acceleration compared with the classical truncated t-SVD. It is shown that the proposed approach can potentially be used in deep learning and internet of things applications.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with proposing a new efficient adaptive algorithm for the computation of tensor SVD (t-SVD). The proposed algorithm can estimate the tubal-rank of a given third-order tensor and the corresponding low tubal-rank approximation given an approximation tolerance. The main advantage of the proposed algorithm is using only a part of lateral and a horizontal slices at each iteration in its computations. So, it is applicable for decomposing large-scale data tensors. Simulations on synthetics and real-world datasets are provided and in some cases, we achieve more than one order of magnitude acceleration compared with the classical truncated t-SVD. It is shown that the proposed approach can potentially be used in deep learning and internet of things applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速自适应交叉管张量近似
本文提出了一种新的有效的张量SVD (t-SVD)自适应计算算法。该算法可以估计给定三阶张量的管秩,并在给定近似容差的情况下估计相应的低管秩近似。该算法的主要优点是在每次迭代中只使用一部分横向切片和一个水平切片。因此,它适用于大规模数据张量的分解。在合成和现实世界数据集上进行了模拟,在某些情况下,与经典截断t-SVD相比,我们实现了一个数量级以上的加速。结果表明,该方法可用于深度学习和物联网应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1