An automatic method for prostate segmentation on 3D MRI scans using local phylogenetic indexes and XGBoost

G. L. F. D. Silva, Francisco Y. C. de Oliveira, J. O. Diniz, P. S. Diniz, D. B. P. Quintanilha, A. Silva, A. Paiva, E. A. A. D. Cavalcanti
{"title":"An automatic method for prostate segmentation on 3D MRI scans using local phylogenetic indexes and XGBoost","authors":"G. L. F. D. Silva, Francisco Y. C. de Oliveira, J. O. Diniz, P. S. Diniz, D. B. P. Quintanilha, A. Silva, A. Paiva, E. A. A. D. Cavalcanti","doi":"10.5753/sbcas.2021.16062","DOIUrl":null,"url":null,"abstract":"The detection, diagnosis, and treatment of prostate cancer depends on the correct determination of the prostate anatomy. In current practice, the prostate segmentation is performed manually by a radiologist, which is extremely time-consuming that demands experience and concentration. Therefore, this paper proposes an automatic method for prostate segmentation on 3D magnetic resonance imaging scans using a superpixel technique, phylogenetic indexes, and an optimized XGBoost algorithm. The proposed method has been evaluated on the Prostate 3T and PROMISE12 databases presenting a dice similarity coefficient of 84.48% and a volumetric similarity of 95.91%, demonstrating the high-performance potential of the proposed method.","PeriodicalId":413867,"journal":{"name":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2021.16062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The detection, diagnosis, and treatment of prostate cancer depends on the correct determination of the prostate anatomy. In current practice, the prostate segmentation is performed manually by a radiologist, which is extremely time-consuming that demands experience and concentration. Therefore, this paper proposes an automatic method for prostate segmentation on 3D magnetic resonance imaging scans using a superpixel technique, phylogenetic indexes, and an optimized XGBoost algorithm. The proposed method has been evaluated on the Prostate 3T and PROMISE12 databases presenting a dice similarity coefficient of 84.48% and a volumetric similarity of 95.91%, demonstrating the high-performance potential of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于局部系统发育指数和XGBoost的三维MRI扫描前列腺自动分割方法
前列腺癌的检测、诊断和治疗取决于对前列腺解剖结构的正确判断。在目前的实践中,前列腺分割是由放射科医生手动完成的,这是非常耗时的,需要经验和注意力。因此,本文提出了一种基于超像素技术、系统发育指标和优化的XGBoost算法的三维磁共振成像扫描前列腺自动分割方法。在前列腺3T和PROMISE12数据库上对该方法进行了评价,结果表明,该方法的骰子相似系数为84.48%,体积相似系数为95.91%,证明了该方法的高性能潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uma Avaliação de Arquiteturas de Aprendizado Profundo para a Classificação de Úlceras do Pé Diabético CitoFocus: Uma Plataforma para Colaboração e Aprendizado em Citopatologia Detecção de Nódulos da Tireoide em Exames de Termografia utilizando Redes Neurais Convolucionais em Cascata Veículo Autônomo Guiado para Entrega de Máscaras de Proteção no Ambiente Industrial Jogos Digitais e Engajamento na Reabilitação de Pacientes: Uma Revisão Sistemática da Literatura
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1