Multi-anatomy localization in fetal echocardiography videos

A. Patra, J. Noble
{"title":"Multi-anatomy localization in fetal echocardiography videos","authors":"A. Patra, J. Noble","doi":"10.1109/ISBI.2019.8759551","DOIUrl":null,"url":null,"abstract":"Fetal heart motion is an important diagnostic indicator for structural detection and functional assessment of congenital heart disease. We propose an approach towards integrating deep convolutional and recurrent architectures that utilize localized spatial and temporal features of different anatomical substructures within a global spatiotemporal context for interpretation of fetal echocardiography videos. We formulate our task as a cardiac structure localization problem with convolutional architectures for aggregating global spatial context and detecting anatomical structures on spatial region proposals. This information is aggregated temporally by recurrent architectures to quantify the progressive motion patterns. We experimentally show that the resulting architecture combines anatomical landmark detection at the frame-level over multiple video sequences-with temporal progress of the associated anatomical motions to encode local spatiotemporal fetal heart dynamics and is validated on a real-world clinical dataset.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Fetal heart motion is an important diagnostic indicator for structural detection and functional assessment of congenital heart disease. We propose an approach towards integrating deep convolutional and recurrent architectures that utilize localized spatial and temporal features of different anatomical substructures within a global spatiotemporal context for interpretation of fetal echocardiography videos. We formulate our task as a cardiac structure localization problem with convolutional architectures for aggregating global spatial context and detecting anatomical structures on spatial region proposals. This information is aggregated temporally by recurrent architectures to quantify the progressive motion patterns. We experimentally show that the resulting architecture combines anatomical landmark detection at the frame-level over multiple video sequences-with temporal progress of the associated anatomical motions to encode local spatiotemporal fetal heart dynamics and is validated on a real-world clinical dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胎儿超声心动图影像的多解剖定位
胎心运动是先天性心脏病结构检测和功能评估的重要诊断指标。我们提出了一种整合深度卷积和循环架构的方法,该方法在全球时空背景下利用不同解剖子结构的局部空间和时间特征来解释胎儿超声心动图视频。我们将我们的任务描述为一个具有卷积架构的心脏结构定位问题,用于聚合全局空间上下文并检测空间区域建议上的解剖结构。这些信息通过循环架构暂时聚合,以量化渐进运动模式。我们通过实验证明,所得到的架构结合了多个视频序列的帧级解剖地标检测,以及相关解剖运动的时间进展,以编码局部时空胎儿心脏动力学,并在现实世界的临床数据集上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1