P. Caillard, F. Gillon, M. Hecquet, S. Randi, N. Janiaud
{"title":"An Optimization Methodology to Pre Design an Electric Vehicle Powertrain","authors":"P. Caillard, F. Gillon, M. Hecquet, S. Randi, N. Janiaud","doi":"10.1109/VPPC.2014.7007015","DOIUrl":null,"url":null,"abstract":"In this paper, a global optimization methodology is described to pre-design an electric vehicle powertrain in order to find the best compromises between components. The modeled system includes a transmission, an electric machine, an inverter and a battery pack. The challenge is to find the dedicated formulations, with the vehicle performance requirements, electric range, and cost calculation that include the whole system without exploding computational time. Bi-objective, range/costs, optimizations with performance constraints are performed to find the potential gain with the system model.","PeriodicalId":133160,"journal":{"name":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2014.7007015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
In this paper, a global optimization methodology is described to pre-design an electric vehicle powertrain in order to find the best compromises between components. The modeled system includes a transmission, an electric machine, an inverter and a battery pack. The challenge is to find the dedicated formulations, with the vehicle performance requirements, electric range, and cost calculation that include the whole system without exploding computational time. Bi-objective, range/costs, optimizations with performance constraints are performed to find the potential gain with the system model.