Buckling analysis of laminated composite thin-walled I-beam under mechanical and thermal loads

Xuan-Bach Bui, Anh-Cao Nguyen, Ngoc-Duong Nguyen, T. Do, T. Nguyen
{"title":"Buckling analysis of laminated composite thin-walled I-beam under mechanical and thermal loads","authors":"Xuan-Bach Bui, Anh-Cao Nguyen, Ngoc-Duong Nguyen, T. Do, T. Nguyen","doi":"10.15625/0866-7136/17956","DOIUrl":null,"url":null,"abstract":"Despite the extensive use of thin-walled structures, the studies on their behaviours when exposed to extreme thermal environment are relatively scarce. Therefore, this paper aims to present the buckling analysis of thin-walled composite I-beams under thermo-mechanical loads. The thermal effects are investigated for the case of studied beams undergoing a uniform temperature rise through their thickness. The theory is based on the first-order shear deformation thin-walled beam theory with linear variation of displacements in the wall thickness. The governing equations of motion are derived from Hamilton's principle and are solved by series-type solutions with hybrid shape functions. Numerical results are presented to investigate the effects of fibre angle, material distribution, span-to-height's ratio and shear deformation on the critical buckling load and temperature rise. These results for several cases are verified with available references to demonstrate the present beam model’s accuracy.","PeriodicalId":239329,"journal":{"name":"Vietnam Journal of Mechanics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0866-7136/17956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the extensive use of thin-walled structures, the studies on their behaviours when exposed to extreme thermal environment are relatively scarce. Therefore, this paper aims to present the buckling analysis of thin-walled composite I-beams under thermo-mechanical loads. The thermal effects are investigated for the case of studied beams undergoing a uniform temperature rise through their thickness. The theory is based on the first-order shear deformation thin-walled beam theory with linear variation of displacements in the wall thickness. The governing equations of motion are derived from Hamilton's principle and are solved by series-type solutions with hybrid shape functions. Numerical results are presented to investigate the effects of fibre angle, material distribution, span-to-height's ratio and shear deformation on the critical buckling load and temperature rise. These results for several cases are verified with available references to demonstrate the present beam model’s accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层合薄壁工字梁在力学和热载荷作用下的屈曲分析
尽管薄壁结构被广泛使用,但对其在极端热环境下的行为研究相对较少。因此,本文旨在对薄壁复合工字梁在热载荷作用下的屈曲进行分析。研究了梁在厚度上均匀升温的情况下的热效应。该理论基于位移随壁厚线性变化的一阶剪切变形薄壁梁理论。运动控制方程由哈密顿原理导出,用混合形函数的级数解求解。给出了纤维角度、材料分布、跨高比和剪切变形对临界屈曲载荷和温升的影响。这些结果与现有的参考文献进行了验证,证明了该梁模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of small punch test to estimate mechanical behaviour of SUS304 austenitic stainless steel Size-dependent nonlinear bending of microbeams based on a third-order shear deformation theory Wave propagation in context of Moore–Gibson–Thompson thermoelasticity with Klein–Gordon nonlocality Application of newly proposed hardening laws for structural steel rods Proportional Topology Optimization algorithm with virtual elements for multi-material problems considering mass and cost constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1