Feasibility Study of MRI and Multimodality CT/MRI Radiomics for Lung Nodule Classification

Anthony E. A. Jatobá, M. C. Oliveira, M. Koenigkam-Santos, Paulo de Azevedo-Marques
{"title":"Feasibility Study of MRI and Multimodality CT/MRI Radiomics for Lung Nodule Classification","authors":"Anthony E. A. Jatobá, M. C. Oliveira, M. Koenigkam-Santos, Paulo de Azevedo-Marques","doi":"10.5753/sbcas.2021.16065","DOIUrl":null,"url":null,"abstract":"Lung cancer is the most common and lethal form of cancer, and its early diagnosis is key to the patient's survival. CT is the reference imaging scan for lung cancer screening; however, it presents the drawback of exposing the patient to ionizing radiation. Recent studies have shown the relevance of MRI in lung nodules diagnosis. In this work, we aimed to evaluate whether radiomics features from MRI are well-suited for lung nodules characterization and if the combination of CT and MRI features can yield better results than the features from the individual modalities. For such, we segmented paired CT and MRI nodules from 33 lung nodules patients, extracted 89 radiomics features from each modality, and combined it into a multimodality feature set. Those features were then used for classifying the nodules into benign and malignant by a set of machine learning algorithms, assessing the AUC across 30 trials. Our results show that MRI radiomics features are suitable for characterizing lung lesions, yielding AUC values up to 17% higher than their CT counterparts, and shedding light on MRI as a viable image modality for decision support systems. Conversely, our multimodality approach did not improve performance compared to the single-modality models, suggesting that the direct combination of multimodality features might not be an adequate strategy for dealing with multimodality medical images.","PeriodicalId":413867,"journal":{"name":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2021.16065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer is the most common and lethal form of cancer, and its early diagnosis is key to the patient's survival. CT is the reference imaging scan for lung cancer screening; however, it presents the drawback of exposing the patient to ionizing radiation. Recent studies have shown the relevance of MRI in lung nodules diagnosis. In this work, we aimed to evaluate whether radiomics features from MRI are well-suited for lung nodules characterization and if the combination of CT and MRI features can yield better results than the features from the individual modalities. For such, we segmented paired CT and MRI nodules from 33 lung nodules patients, extracted 89 radiomics features from each modality, and combined it into a multimodality feature set. Those features were then used for classifying the nodules into benign and malignant by a set of machine learning algorithms, assessing the AUC across 30 trials. Our results show that MRI radiomics features are suitable for characterizing lung lesions, yielding AUC values up to 17% higher than their CT counterparts, and shedding light on MRI as a viable image modality for decision support systems. Conversely, our multimodality approach did not improve performance compared to the single-modality models, suggesting that the direct combination of multimodality features might not be an adequate strategy for dealing with multimodality medical images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRI和多模态CT/MRI放射组学在肺结节分类中的可行性研究
肺癌是最常见和最致命的癌症,其早期诊断是患者生存的关键。CT是肺癌筛查的参考影像学扫描;然而,它的缺点是使病人暴露在电离辐射下。最近的研究显示MRI在肺结节诊断中的相关性。在这项工作中,我们旨在评估MRI放射组学特征是否适合肺结节的表征,以及CT和MRI特征的结合是否比单个模式的特征产生更好的结果。为此,我们对33例肺结节患者的配对CT和MRI结节进行了分割,从每个模态中提取了89个放射组学特征,并将其合并成一个多模态特征集。然后通过一组机器学习算法将这些特征用于将结节分为良性和恶性,评估30次试验的AUC。我们的研究结果表明,MRI放射组学特征适用于表征肺部病变,其AUC值比CT高17%,并阐明MRI作为决策支持系统的可行图像模式。相反,与单模态模型相比,我们的多模态方法并没有提高性能,这表明多模态特征的直接组合可能不是处理多模态医学图像的适当策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uma Avaliação de Arquiteturas de Aprendizado Profundo para a Classificação de Úlceras do Pé Diabético CitoFocus: Uma Plataforma para Colaboração e Aprendizado em Citopatologia Detecção de Nódulos da Tireoide em Exames de Termografia utilizando Redes Neurais Convolucionais em Cascata Veículo Autônomo Guiado para Entrega de Máscaras de Proteção no Ambiente Industrial Jogos Digitais e Engajamento na Reabilitação de Pacientes: Uma Revisão Sistemática da Literatura
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1