Humidity Prediction Model using Long Short Term Memory in Recurrent Neural Network

T. Wahyono, Sri Winarso Martyas Edi, A. Mulyani, D. Kurniadi
{"title":"Humidity Prediction Model using Long Short Term Memory in Recurrent Neural Network","authors":"T. Wahyono, Sri Winarso Martyas Edi, A. Mulyani, D. Kurniadi","doi":"10.1109/ICITech50181.2021.9590164","DOIUrl":null,"url":null,"abstract":"Based on the importance of estimating air humidity in a region, this study proposes a method for air humidity prediction, based on deep learning using the Long Short Term Memory (LSTM) method. The results showed that LSTM, which is a variant of Recurrent Neural Network (RNN), can be used to predict air humidity better than other methods. The data training process by using the linear regression produced the MSE value of 0.417 and the RMSE value of 0.646, whereas the LSTM method produced the MSE value of 0.018 and the RMSE value of 0.136.","PeriodicalId":429669,"journal":{"name":"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITech50181.2021.9590164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the importance of estimating air humidity in a region, this study proposes a method for air humidity prediction, based on deep learning using the Long Short Term Memory (LSTM) method. The results showed that LSTM, which is a variant of Recurrent Neural Network (RNN), can be used to predict air humidity better than other methods. The data training process by using the linear regression produced the MSE value of 0.417 and the RMSE value of 0.646, whereas the LSTM method produced the MSE value of 0.018 and the RMSE value of 0.136.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于循环神经网络长短期记忆的湿度预测模型
基于估算区域内空气湿度的重要性,本研究提出了一种基于长短期记忆(LSTM)方法的深度学习的空气湿度预测方法。结果表明,LSTM作为递归神经网络(RNN)的一种变体,能够较好地预测空气湿度。使用线性回归的数据训练过程产生的MSE值为0.417,RMSE值为0.646,而LSTM方法产生的MSE值为0.018,RMSE值为0.136。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forecasting Stock Exchange Using Gated Recurrent Unit Comparison of Capacitated Vehicle Routing Problem Using Initial Route and Without Initial Route for Pharmaceuticals Distribution Propose Model Blockchain Technology Based Good Manufacturing Practice Model of Pharmacy Industry in Indonesia [Copyright notice] Identification of Rice Leaf Disease Using Convolutional Neural Network Based on Android Mobile Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1