Neural networks based on adjustable-order statistic filters for multimedia multicast routing

N. Saber, M. Khouil, M. Mestari
{"title":"Neural networks based on adjustable-order statistic filters for multimedia multicast routing","authors":"N. Saber, M. Khouil, M. Mestari","doi":"10.1109/CIST.2014.7016660","DOIUrl":null,"url":null,"abstract":"Multicast routing in communication networks is to transmit information from a single source to multiple destinations, using the network resources very effectively, and respecting several constraints, such as delay, cost, bandwidth or other. To guarantee optimal diffusion, it is necessary to determine a tree that connects the source node to all destination nodes minimizing the use of resources. In this paper, we propose an artificial neural network for the construction of the multicast tree, based on adjustable-order statistic filters. Our approach for solving this problem differs from the conventional approach used in the field of neural networks. Our primary concern is how to organize neurons into a network so that it can solve a specific problem, with an emphasis on fully utilizing the massive parallelism property offered by neural networks.","PeriodicalId":106483,"journal":{"name":"2014 Third IEEE International Colloquium in Information Science and Technology (CIST)","volume":"2008 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Third IEEE International Colloquium in Information Science and Technology (CIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIST.2014.7016660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multicast routing in communication networks is to transmit information from a single source to multiple destinations, using the network resources very effectively, and respecting several constraints, such as delay, cost, bandwidth or other. To guarantee optimal diffusion, it is necessary to determine a tree that connects the source node to all destination nodes minimizing the use of resources. In this paper, we propose an artificial neural network for the construction of the multicast tree, based on adjustable-order statistic filters. Our approach for solving this problem differs from the conventional approach used in the field of neural networks. Our primary concern is how to organize neurons into a network so that it can solve a specific problem, with an emphasis on fully utilizing the massive parallelism property offered by neural networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可调阶统计滤波的神经网络在多媒体组播路由中的应用
在通信网络中,组播路由是一种将信息从一个源传输到多个目的地的方法,它能有效地利用网络资源,并且要考虑到延迟、成本、带宽等多种限制。为了保证最优的扩散,需要确定一棵连接源节点和所有目标节点的树,以最小化资源的使用。本文提出了一种基于可调阶统计滤波器的组播树人工神经网络构造方法。我们解决这个问题的方法不同于神经网络领域中使用的传统方法。我们主要关注的是如何将神经元组织成一个网络,以便它可以解决一个特定的问题,重点是充分利用神经网络提供的大规模并行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Getting the static model of PIM from the CIM Development of a web-based weather station for irrigation scheduling Interactive simulation as a virtual tool in electromagnetics for online education Towards a smart cloud gate for smart devices Enhancing Arabic WordNet with the use of Princeton WordNet and a bilingual dictionary
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1