Estimating the Topology of Neural Networks from Distributed Observations

Roxana Alexandru, P. Malhotra, Stephanie Reynolds, P. Dragotti
{"title":"Estimating the Topology of Neural Networks from Distributed Observations","authors":"Roxana Alexandru, P. Malhotra, Stephanie Reynolds, P. Dragotti","doi":"10.23919/EUSIPCO.2018.8553016","DOIUrl":null,"url":null,"abstract":"We address the problem of estimating the effective connectivity of the brain network, using the input stimulus model proposed by Izhikevich in [1], which accurately reproduces the behaviour of spiking and bursting biological neurons, whilst ensuring computational simplicity. We first analyse the temporal dynamics of neural networks, showing that the spike propagation within the brain can be modelled as a diffusion process. This helps prove the suitability of NetRate algorithm proposed by Rodriguez in [2] to infer the structure of biological neural networks. Finally, we present simulation results using synthetic data to verify the performance of the topology estimation algorithm.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We address the problem of estimating the effective connectivity of the brain network, using the input stimulus model proposed by Izhikevich in [1], which accurately reproduces the behaviour of spiking and bursting biological neurons, whilst ensuring computational simplicity. We first analyse the temporal dynamics of neural networks, showing that the spike propagation within the brain can be modelled as a diffusion process. This helps prove the suitability of NetRate algorithm proposed by Rodriguez in [2] to infer the structure of biological neural networks. Finally, we present simulation results using synthetic data to verify the performance of the topology estimation algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分布式观测的神经网络拓扑估计
我们使用Izhikevich在[1]中提出的输入刺激模型来解决估计大脑网络有效连通性的问题,该模型准确地再现了生物神经元的峰值和破裂行为,同时确保了计算的简单性。我们首先分析了神经网络的时间动态,表明大脑内的尖峰传播可以建模为扩散过程。这有助于证明Rodriguez在[2]中提出的NetRate算法对于推断生物神经网络结构的适用性。最后,给出了综合数据的仿真结果,验证了拓扑估计算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1