Prediction of Pressure Drops in Liquid-Liquid Two-Phase Flow Across Circular Channels

Zurwa Khan, R. Tafreshi, Md Ferdous Wahid, A. Retnanto
{"title":"Prediction of Pressure Drops in Liquid-Liquid Two-Phase Flow Across Circular Channels","authors":"Zurwa Khan, R. Tafreshi, Md Ferdous Wahid, A. Retnanto","doi":"10.1115/omae2021-62861","DOIUrl":null,"url":null,"abstract":"\n Mechanistic models are necessary for understanding and predicting the behavior of liquid-liquid flow for multiple pipe dimensions, mixture properties, and flow patterns. In this paper, a mechanistic model is proposed to calculate pressure drop across circular channels for liquid-liquid two-phase flow. The developed model considers several key aspects of liquid-liquid flow, such as mixed and wavy liquid-liquid interfaces and dispersion within each liquid’s layers. Unique identifiers, such as height, turbulence, and dispersion, are calculated for each phase, using an augmented separated flow model and nonlinear optimization. Comparison of the proposed model with experimental data, comprising of multiple inclination angles and flow patterns, shows accurate predictions for a variety of liquid-liquid flow patterns, including double- and triple-layered flow.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"2008 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Pipelines, Risers, and Subsea Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-62861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Mechanistic models are necessary for understanding and predicting the behavior of liquid-liquid flow for multiple pipe dimensions, mixture properties, and flow patterns. In this paper, a mechanistic model is proposed to calculate pressure drop across circular channels for liquid-liquid two-phase flow. The developed model considers several key aspects of liquid-liquid flow, such as mixed and wavy liquid-liquid interfaces and dispersion within each liquid’s layers. Unique identifiers, such as height, turbulence, and dispersion, are calculated for each phase, using an augmented separated flow model and nonlinear optimization. Comparison of the proposed model with experimental data, comprising of multiple inclination angles and flow patterns, shows accurate predictions for a variety of liquid-liquid flow patterns, including double- and triple-layered flow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液-液两相流通过圆形通道的压降预测
机械模型对于理解和预测多种管道尺寸、混合特性和流型的液-液流动行为是必要的。本文提出了一种计算液-液两相流圆形通道压降的力学模型。所建立的模型考虑了液-液流动的几个关键方面,如混合和波浪形液-液界面以及每个液体层内的分散。使用增强型分离流模型和非线性优化,计算每个相的唯一标识符,如高度、湍流和弥散。将该模型与包含多种倾斜角度和流型的实验数据进行比较,结果表明该模型能够准确预测包括双层流和三层流在内的多种液-液流流型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrity Monitoring of Offshore Arctic Pipelines Investigation of Near-Field Temperature Distribution in Buried Dense Phase CO2 Pipelines On the Plastic Bending Responses of Dented Lined Pipe Implementation of a Method for Free-Spanning Pipeline Analysis Simplified Stochastic Modelling of the Force on a Pipe Bend Due to Two-Phase Slug Flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1