Progressive Optimization of Batched LU Factorization on GPUs

A. Abdelfattah, S. Tomov, J. Dongarra
{"title":"Progressive Optimization of Batched LU Factorization on GPUs","authors":"A. Abdelfattah, S. Tomov, J. Dongarra","doi":"10.1109/HPEC.2019.8916270","DOIUrl":null,"url":null,"abstract":"This paper presents a progressive approach for optimizing the batched LU factorization on graphics processing units (GPUs). The paper shows that the reliance on level-3 BLAS routines for performance does not really pay off, and that it is indeed important to pay attention to the memory-bound part of the algorithm, especially when the problem size is very small. In this context, we develop a size-aware multi-level blocking technique that utilizes different granularities for kernel fusion according to the problem size. Our experiments, which are conducted on a Tesla V100 GPU, show that the multi-level blocking technique achieves speedups for single/double precisions that are up to 3.28×/2.69× against the generic LAPACK-style implementation. It is also up to 8.72×/7.2× faster than the cuBLAS library for single and double precisions, respectively. The developed solution is integrated into the open-source MAGMA library.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1996 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a progressive approach for optimizing the batched LU factorization on graphics processing units (GPUs). The paper shows that the reliance on level-3 BLAS routines for performance does not really pay off, and that it is indeed important to pay attention to the memory-bound part of the algorithm, especially when the problem size is very small. In this context, we develop a size-aware multi-level blocking technique that utilizes different granularities for kernel fusion according to the problem size. Our experiments, which are conducted on a Tesla V100 GPU, show that the multi-level blocking technique achieves speedups for single/double precisions that are up to 3.28×/2.69× against the generic LAPACK-style implementation. It is also up to 8.72×/7.2× faster than the cuBLAS library for single and double precisions, respectively. The developed solution is integrated into the open-source MAGMA library.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gpu上批量LU分解的渐进式优化
本文提出了一种优化图形处理器(gpu)上批量LU分解的渐进式方法。本文表明,依赖于3级BLAS例程的性能并没有真正得到回报,并且注意算法的内存绑定部分确实很重要,特别是当问题规模非常小的时候。在这种情况下,我们开发了一种大小感知的多级块技术,根据问题的大小利用不同的粒度进行核融合。我们在Tesla V100 GPU上进行的实验表明,与一般的lapack风格实现相比,多级阻塞技术可以实现高达3.28×/2.69×的单/双精度加速。在单精度和双精度方面,它也比cuBLAS库分别快8.72倍/7.2倍。开发的解决方案集成到开源的MAGMA库中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1