Analysis of Multilayer Perceptron with Rectifier Linear Unit Activation Function

Meirambek Mukhametkhan, O. Krestinskaya, A. P. James
{"title":"Analysis of Multilayer Perceptron with Rectifier Linear Unit Activation Function","authors":"Meirambek Mukhametkhan, O. Krestinskaya, A. P. James","doi":"10.1109/coconet.2018.8476902","DOIUrl":null,"url":null,"abstract":"The implementation of analog neural network and online analog learning circuits based on memristive crossbar has been intensively explored in the recent years. The design of various activation functions is important for neuromorphic circuits and systems, especially deep leaning neural networks. There are several implementations of sigmoid and tangent activation function, while the analog hardware implementation of the neural networks with linear activation functions is an open problem. Therefore, this paper introduces a multilayer perceptron design with linear activation function using TSMC $130 \\mu m$CMOS technology. In this paper, the performance of the proposed linear activation function is illustrated. In addition, the temperature variation and noise analysis are shown.","PeriodicalId":250788,"journal":{"name":"2018 International Conference on Computing and Network Communications (CoCoNet)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Computing and Network Communications (CoCoNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/coconet.2018.8476902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The implementation of analog neural network and online analog learning circuits based on memristive crossbar has been intensively explored in the recent years. The design of various activation functions is important for neuromorphic circuits and systems, especially deep leaning neural networks. There are several implementations of sigmoid and tangent activation function, while the analog hardware implementation of the neural networks with linear activation functions is an open problem. Therefore, this paper introduces a multilayer perceptron design with linear activation function using TSMC $130 \mu m$CMOS technology. In this paper, the performance of the proposed linear activation function is illustrated. In addition, the temperature variation and noise analysis are shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有整流线性单元激活函数的多层感知器分析
近年来,基于记忆交叉棒的模拟神经网络和在线模拟学习电路的实现得到了广泛的研究。各种激活函数的设计对于神经形态回路和系统,特别是深度学习神经网络是非常重要的。sigmoid激活函数和tan激活函数的实现有多种,而具有线性激活函数的神经网络的模拟硬件实现是一个开放的问题。因此,本文介绍了一种采用TSMC $130 \mu $CMOS技术的线性激活函数多层感知器的设计。本文对所提出的线性激活函数的性能进行了说明。此外,给出了温度变化和噪声分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Underlay Cognitive Radio with Imperfect Transceiver Electronics under Nakagami-m Fading Current Sense Amplifier Design with CMOS-Memristive Circuits Variability analysis of Cascode Current Mirror Designs with CMOS-memristive Components Memristor-based Optimum Legendre Low-Pass Filter Comparative Analysis of SGO and PSO for Clustering in WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1