Speech recognition using facial sEMG

Mok Win Soon, Muhammad Ikmal Hanafi Anuar, Mohamad Hafizat Zainal Abidin, Ahmad Syukri Azaman, N. Noor
{"title":"Speech recognition using facial sEMG","authors":"Mok Win Soon, Muhammad Ikmal Hanafi Anuar, Mohamad Hafizat Zainal Abidin, Ahmad Syukri Azaman, N. Noor","doi":"10.1109/ICSIPA.2017.8120569","DOIUrl":null,"url":null,"abstract":"This paper presents a study of speech recognition based on electromyographic biosignals captured from the articulatory muscles in the face using surface electrodes. This paper compares the speech recognition system for spoken English and Malay words by a group of Malay native speakers. Feature extraction was done in both temporal and time-frequency domains. Temporal features used are integrated EMG (IEMG), mean absolute value (MAV), root mean square (RMS), variance (VAR), standard deviation (SD), and simple square integral (SSI) where time-frequency domain features were obtained using discrete wavelet transform. For classification, random forest classifier and ANNs multilayer perceptron both gave the overall best performance on using temporal features and time-frequency features respectively. The result of the classification shows that the Malay language is can be used in sEMG speech recognition.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a study of speech recognition based on electromyographic biosignals captured from the articulatory muscles in the face using surface electrodes. This paper compares the speech recognition system for spoken English and Malay words by a group of Malay native speakers. Feature extraction was done in both temporal and time-frequency domains. Temporal features used are integrated EMG (IEMG), mean absolute value (MAV), root mean square (RMS), variance (VAR), standard deviation (SD), and simple square integral (SSI) where time-frequency domain features were obtained using discrete wavelet transform. For classification, random forest classifier and ANNs multilayer perceptron both gave the overall best performance on using temporal features and time-frequency features respectively. The result of the classification shows that the Malay language is can be used in sEMG speech recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于面部肌电信号的语音识别
本文提出了一种基于面部关节肌肌电生物信号的语音识别研究。本文比较了一组马来语母语人士的英语口语和马来语语音识别系统。在时域和时频域进行特征提取。所用的时间特征是综合肌电信号(IEMG)、平均绝对值(MAV)、均方根(RMS)、方差(VAR)、标准差(SD)和简单平方积分(SSI),其中采用离散小波变换获得时频域特征。在分类方面,随机森林分类器和人工神经网络多层感知器分别在利用时间特征和时频特征方面表现最佳。分类结果表明马来语是可以用于表面肌电信号语音识别的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1