Accelerating Nash Q-Learning with Graphical Game Representation and Equilibrium Solving

Yunkai Zhuang, Xingguo Chen, Yang Gao, Yujing Hu
{"title":"Accelerating Nash Q-Learning with Graphical Game Representation and Equilibrium Solving","authors":"Yunkai Zhuang, Xingguo Chen, Yang Gao, Yujing Hu","doi":"10.1109/ICTAI.2019.00133","DOIUrl":null,"url":null,"abstract":"Traditional Nash Q-learning algorithm generally accepts a fact that agents are tightly coupled, which brings huge computing burden. However, many multi-agent systems in the real world have sparse interactions between agents. In this paper, sparse interactions are divided into two categories: intra-group sparse interactions and inter-group sparse interactions. Previous methods can only deal with one specific type of sparse interactions. Aiming at characterizing the two categories of sparse interactions, we use a novel mathematical model called Markov graphical game. On this basis, graphical game-based Nash Q-learning is proposed to deal with different types of interactions. Experimental results show that our algorithm takes less time per episode and acquires a good policy.","PeriodicalId":346657,"journal":{"name":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"2009 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2019.00133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Traditional Nash Q-learning algorithm generally accepts a fact that agents are tightly coupled, which brings huge computing burden. However, many multi-agent systems in the real world have sparse interactions between agents. In this paper, sparse interactions are divided into two categories: intra-group sparse interactions and inter-group sparse interactions. Previous methods can only deal with one specific type of sparse interactions. Aiming at characterizing the two categories of sparse interactions, we use a novel mathematical model called Markov graphical game. On this basis, graphical game-based Nash Q-learning is proposed to deal with different types of interactions. Experimental results show that our algorithm takes less time per episode and acquires a good policy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用图形博弈表示和均衡求解加速纳什q -学习
传统的Nash Q-learning算法普遍接受agent紧密耦合的事实,这带来了巨大的计算负担。然而,现实世界中的许多多智能体系统在智能体之间具有稀疏的交互。本文将稀疏交互分为两类:组内稀疏交互和组间稀疏交互。以前的方法只能处理一种特定类型的稀疏交互。针对两类稀疏交互的特征,我们使用了一种新的数学模型,称为马尔可夫图形博弈。在此基础上,提出了基于图形游戏的纳什q -学习来处理不同类型的交互。实验结果表明,该算法每集所需的时间较短,并获得了较好的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monaural Music Source Separation using a ResNet Latent Separator Network Graph-Based Attention Networks for Aspect Level Sentiment Analysis A Multi-channel Neural Network for Imbalanced Emotion Recognition Scaling up Prediction of Psychosis by Natural Language Processing Improving Bandit-Based Recommendations with Spatial Context Reasoning: An Online Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1