ОПТИМИЗАЦИЯ ПОРЯДКА РЕДУЦИРОВАННОЙ ДИНАМИЧЕСКОЙ МОДЕЛИ НЕНАГРУЖЕННОГО НЕФТЕПОГРУЖНОГО КАБЕЛЯ НА ОСНОВЕ АППРОКСИМАЦИИ АМПЛИТУДНО-ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ

Александр Савельевич Глазырин, Юсуп Ниязбекович Исаев, Сергей Николаевич Кладиев, Андрей Петрович Леонов, Иван Витальевич Раков, Станислав Вячеславович Колесников, Сергей Владимирович Ланграф, Александр Александрович Филипас, Владимир Анатольевич Копырин, Рустам Нуриманович Хамитов, Владимир Захарович Ковалев
{"title":"ОПТИМИЗАЦИЯ ПОРЯДКА РЕДУЦИРОВАННОЙ ДИНАМИЧЕСКОЙ МОДЕЛИ НЕНАГРУЖЕННОГО НЕФТЕПОГРУЖНОГО КАБЕЛЯ НА ОСНОВЕ АППРОКСИМАЦИИ АМПЛИТУДНО-ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ","authors":"Александр Савельевич Глазырин, Юсуп Ниязбекович Исаев, Сергей Николаевич Кладиев, Андрей Петрович Леонов, Иван Витальевич Раков, Станислав Вячеславович Колесников, Сергей Владимирович Ланграф, Александр Александрович Филипас, Владимир Анатольевич Копырин, Рустам Нуриманович Хамитов, Владимир Захарович Ковалев","doi":"10.18799/24131830/2021/9/3365","DOIUrl":null,"url":null,"abstract":"Актуальность. Нефтепогружной кабель предназначен для передачи электрической энергии от источника энергии к погружным электродвигателям установок добычи нефти. Амплитудно-частотная характеристика ненагруженного кабеля отличается резонансными пиками, локализованными в более узкой полосе частот, наличие которых позволяет корректно провести оптимизацию порядка редуцированной модели кабельной линии на основе критерия минимума ошибки. Основными способами математического описания модели нефтепогружного кабеля являются системы обыкновенных дифференциальных уравнений и системы дифференциальных уравнений в частных производных. Первый способ математического описания модели нефтепогружного кабеля, состоящей из одного элементарного четырехполюсника с продольной активно-индуктивной и поперечной активно-емкостной составляющими, позволяет произвести расчёт баланса мощностей и расчёт передачи энергии на первой гармонике, с учетом потерь на омическом (активном) сопротивлении, а также потерь в изоляции кабеля. Применение математической модели, состоящей из одного элементарного четырехполюсника, недопустимо для более сложных задач, таких как диагностика места повреждения кабеля, идентификация и оценивание параметров погружного двигателя на основе наземных измерений, управление переходным процессом погружного двигателя при пуске и других. Второй способ математического описания модели нефтепогружного кабеля основывается на «телеграфных» уравнениях в форме системы дифференциальных уравнений в частных производных. Основное достоинство такой математической модели заключается в повышенной точности анализа специфических режимов, присущих длинным электрическим линиям, таких как прямые и обратные волны, резонансные явления, возникающие при взаимном обмене энергией между электрической и магнитной компонентой электромагнитного поля и т. д. К недостаткам можно отнести технические трудности совмещения математической модели кабеля на основе системы дифференциальных уравнений в частных производных и математической модели погружного двигателя на основе системы дифференциальных уравнений в нормальной форме Коши. Также модели длинных электрических линий на основе «телеграфных» уравнений на практике крайне сложно реализовать в микроконтроллере для использования в системах реального времени, построенных на основе цифровых сигнальных процессов. С точки зрения применения динамических моделей в цифровых системах реального времени, актуальным является переход от математической модели кабеля с распределенными параметрами к математической модели кабеля с сосредоточенными параметрами, т. е. к четырехполюсникам. В то же время при таком переходе недопустимо применять математическую модель, представленную одним звеном, так как возникают неприемлемые несоответствия между работой реального объекта и математической моделью этого объекта. Это, в свою очередь, не позволяет достоверно отобразить процессы, протекающие в кабеле при питании от частотного преобразователя. Применение модели с практически бесконечным числом четырехполюсников не является целесообразным, так как расчет такой модели займет большое количество процессорного времени, что недопустимо в системах реального времени и нивелирует преимущества перехода от математической модели с распределенными параметрами. Учитывая сказанное, определение оптимального порядка редуцированной динамической модели ненагруженного нефтепогружного кабеля на основе аппроксимации его амплитудно-частотной характеристики является актуальной, научной и практически значимой задачей. Цель: разработка методики определения минимально необходимого и достаточного количества звеньев редуцированной динамической математической модели нефтепогружного кабеля с сосредоточенными параметрами для использования с заданной точностью в переходных и установившихся режимах работы. Методы: системы дифференциальных уравнений в нормальной форме Коши, системы дифференциальных уравнений в частных производных, нелинейные алгебраические уравнения, метод Крамера, численные методы, теория четырехполюсников, теория длинных линий с распределенными параметрами, метод пространства состояний, методы частотного анализа, методы оптимизации.  Результаты. Получена редуцированная динамическая модель, состоящая из минимально необходимого и достаточного количества четырехполюсников, позволяющая с заданной точностью провести анализ переходных и установившихся электромагнитных процессов по длине кабельной линии и при различных формах напряжения на входе. Полученная редуцированная модель применима для задач идентификации параметров кабеля, диагностики целостности электрических цепей, определения характера распределения напряжений по длине кабельной линии. Полученная редуцированная динамическая модель позволяет оценивать весь спектр динамических режимов работы в отличие от модели прототипа. Разработанная редуцированная динамическая модель погружного кабеля, описанная в обыкновенных дифференциальных уравнениях, представлена в удобной форме записи математического описания кабеля как подсистемы электротехнического комплекса установки электроцентробежного насоса.","PeriodicalId":415632,"journal":{"name":"Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18799/24131830/2021/9/3365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Актуальность. Нефтепогружной кабель предназначен для передачи электрической энергии от источника энергии к погружным электродвигателям установок добычи нефти. Амплитудно-частотная характеристика ненагруженного кабеля отличается резонансными пиками, локализованными в более узкой полосе частот, наличие которых позволяет корректно провести оптимизацию порядка редуцированной модели кабельной линии на основе критерия минимума ошибки. Основными способами математического описания модели нефтепогружного кабеля являются системы обыкновенных дифференциальных уравнений и системы дифференциальных уравнений в частных производных. Первый способ математического описания модели нефтепогружного кабеля, состоящей из одного элементарного четырехполюсника с продольной активно-индуктивной и поперечной активно-емкостной составляющими, позволяет произвести расчёт баланса мощностей и расчёт передачи энергии на первой гармонике, с учетом потерь на омическом (активном) сопротивлении, а также потерь в изоляции кабеля. Применение математической модели, состоящей из одного элементарного четырехполюсника, недопустимо для более сложных задач, таких как диагностика места повреждения кабеля, идентификация и оценивание параметров погружного двигателя на основе наземных измерений, управление переходным процессом погружного двигателя при пуске и других. Второй способ математического описания модели нефтепогружного кабеля основывается на «телеграфных» уравнениях в форме системы дифференциальных уравнений в частных производных. Основное достоинство такой математической модели заключается в повышенной точности анализа специфических режимов, присущих длинным электрическим линиям, таких как прямые и обратные волны, резонансные явления, возникающие при взаимном обмене энергией между электрической и магнитной компонентой электромагнитного поля и т. д. К недостаткам можно отнести технические трудности совмещения математической модели кабеля на основе системы дифференциальных уравнений в частных производных и математической модели погружного двигателя на основе системы дифференциальных уравнений в нормальной форме Коши. Также модели длинных электрических линий на основе «телеграфных» уравнений на практике крайне сложно реализовать в микроконтроллере для использования в системах реального времени, построенных на основе цифровых сигнальных процессов. С точки зрения применения динамических моделей в цифровых системах реального времени, актуальным является переход от математической модели кабеля с распределенными параметрами к математической модели кабеля с сосредоточенными параметрами, т. е. к четырехполюсникам. В то же время при таком переходе недопустимо применять математическую модель, представленную одним звеном, так как возникают неприемлемые несоответствия между работой реального объекта и математической моделью этого объекта. Это, в свою очередь, не позволяет достоверно отобразить процессы, протекающие в кабеле при питании от частотного преобразователя. Применение модели с практически бесконечным числом четырехполюсников не является целесообразным, так как расчет такой модели займет большое количество процессорного времени, что недопустимо в системах реального времени и нивелирует преимущества перехода от математической модели с распределенными параметрами. Учитывая сказанное, определение оптимального порядка редуцированной динамической модели ненагруженного нефтепогружного кабеля на основе аппроксимации его амплитудно-частотной характеристики является актуальной, научной и практически значимой задачей. Цель: разработка методики определения минимально необходимого и достаточного количества звеньев редуцированной динамической математической модели нефтепогружного кабеля с сосредоточенными параметрами для использования с заданной точностью в переходных и установившихся режимах работы. Методы: системы дифференциальных уравнений в нормальной форме Коши, системы дифференциальных уравнений в частных производных, нелинейные алгебраические уравнения, метод Крамера, численные методы, теория четырехполюсников, теория длинных линий с распределенными параметрами, метод пространства состояний, методы частотного анализа, методы оптимизации.  Результаты. Получена редуцированная динамическая модель, состоящая из минимально необходимого и достаточного количества четырехполюсников, позволяющая с заданной точностью провести анализ переходных и установившихся электромагнитных процессов по длине кабельной линии и при различных формах напряжения на входе. Полученная редуцированная модель применима для задач идентификации параметров кабеля, диагностики целостности электрических цепей, определения характера распределения напряжений по длине кабельной линии. Полученная редуцированная динамическая модель позволяет оценивать весь спектр динамических режимов работы в отличие от модели прототипа. Разработанная редуцированная динамическая модель погружного кабеля, описанная в обыкновенных дифференциальных уравнениях, представлена в удобной форме записи математического описания кабеля как подсистемы электротехнического комплекса установки электроцентробежного насоса.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据振幅频率特性近似化优化未装载的油管降压动力模型
相关。这条输油电缆的设计目的是将电力从能源输送到石油生产设施的输电发动机。未装载电缆的振幅频率特征不同于共振峰,在较窄的频率带中定位,允许根据最小误差标准正确优化电缆线的次序模型。石油浸入式电缆模型的数学描述主要方法是普通微分方程系统和私人导数微分方程系统。第一个数学方法来描述由一个基本的四极生物组成的油管模型,纵向电感和横向电容组成,可以计算功率平衡和能量在第一个谐波上的转移,考虑到电阻的损失和绝缘损失。使用一种基本的四极数学模型,对于更复杂的任务,如诊断电缆损坏的地点、识别和评估地面测量的潜水引擎参数、在启动时控制潜水器的过渡过程等,是不可接受的。石油浸入式电缆模型的数学描述的第二个方法是基于私人导数微分方程的“电报”方程。这种数学模型的主要优点是对长时间电力线(如直线和逆波、共振现象)的特定模式的精确分析。电磁场和磁场的相互交换所产生的能量不足可以归因于利用私人导数微分方程系统和标准形式的微分方程系统将电缆的数学模型结合起来的技术困难。此外,基于“电报”方程的长线路模型在实践中很难实现微观控制器,用于基于数字信号过程的实时系统。从实时数字系统中动态模型的应用来看,重要的是从分布式电缆的数学模型到集中的电缆的数学模型,即四极。然而,由于实际对象的工作与实际对象的数学模型之间存在不可接受的不一致,因此这种转换是不可接受的。这反过来又不允许准确地反映电缆从频率转换器供电的过程。使用几乎无穷无尽的四极模型是不明智的,因为计算这样的模型需要大量的处理时间,这在实时系统中是不可接受的,并且低估了从分布式数学模型转变的好处。考虑到这一点,根据其振幅、科学和几乎意义重大的特性,确定无载燃料电缆的最佳降压动力模型。目标:开发一种方法,以确定在过渡和稳定的工作模式中所需和足够数量的退化动态数学模型的数量,集中的参数。方法:正常柯西微分方程、偏导数微分方程、非线性代数方程、数值代数、四极理论、分布式长线理论、状态空间方法、频率分析方法、优化方法。结果。有一个退化的动态模型,由最少的需要和足够的四极组成,允许精确地分析电缆长度和不同形式的电压。减压模型适用于识别电缆参数、诊断电路完整性、根据电缆长度确定电压分布的性质。被简化的动态模型允许评估所有动态模式的光谱,而不是原型模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ПОВЫШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ БИНАРНОЙ ГЕОЭС (НА ПРИМЕРЕ КУМУХСКОГО МЕСТОРОЖДЕНИЯ) ОПТИМИЗАЦИЯ ПРОЦЕССОВ ВОДОПОДГОТОВКИ ОБОРОТНОЙ ВОДЫ ЗАВОДА ПО ВТОРИЧНОЙ ПЕРЕРАБОТКЕ ПЛАСТМАСС ОПТИМИЗАЦИЯ ПОРЯДКА РЕДУЦИРОВАННОЙ ДИНАМИЧЕСКОЙ МОДЕЛИ НЕНАГРУЖЕННОГО НЕФТЕПОГРУЖНОГО КАБЕЛЯ НА ОСНОВЕ АППРОКСИМАЦИИ АМПЛИТУДНО-ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ ПОСТРОЕНИЕ ТРЕХМЕРНЫХ МОДЕЛЕЙ НЕФТЕНАСЫЩЕННОСТИ. ОСНОВНЫЕ ПРОБЛЕМЫ И ПОДХОДЫ К ИХ РЕШЕНИЮ МОДИФИЦИРОВАННАЯ ОЦЕНКА ПРЭТТА–ЯСКОРСКОГО В ОБОБЩЕННОМ ПОКАЗАТЕЛЕ КАЧЕСТВА АЛГОРИТМОВ КОНТУРНОГО ДЕТЕКТИРОВАНИЯ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1