Constrained Sequence-to-sequence Semitic Root Extraction for Enriching Word Embeddings

Ahmed El-Kishky, Xingyu Fu, Aseel Addawood, N. Sobh, Clare R. Voss, Jiawei Han
{"title":"Constrained Sequence-to-sequence Semitic Root Extraction for Enriching Word Embeddings","authors":"Ahmed El-Kishky, Xingyu Fu, Aseel Addawood, N. Sobh, Clare R. Voss, Jiawei Han","doi":"10.18653/v1/W19-4610","DOIUrl":null,"url":null,"abstract":"In this paper, we tackle the problem of “root extraction” from words in the Semitic language family. A challenge in applying natural language processing techniques to these languages is the data sparsity problem that arises from their rich internal morphology, where the substructure is inherently non-concatenative and morphemes are interdigitated in word formation. While previous automated methods have relied on human-curated rules or multiclass classification, they have not fully leveraged the various combinations of regular, sequential concatenative morphology within the words and the internal interleaving within templatic stems of roots and patterns. To address this, we propose a constrained sequence-to-sequence root extraction method. Experimental results show our constrained model outperforms a variety of methods at root extraction. Furthermore, by enriching word embeddings with resulting decompositions, we show improved results on word analogy, word similarity, and language modeling tasks.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we tackle the problem of “root extraction” from words in the Semitic language family. A challenge in applying natural language processing techniques to these languages is the data sparsity problem that arises from their rich internal morphology, where the substructure is inherently non-concatenative and morphemes are interdigitated in word formation. While previous automated methods have relied on human-curated rules or multiclass classification, they have not fully leveraged the various combinations of regular, sequential concatenative morphology within the words and the internal interleaving within templatic stems of roots and patterns. To address this, we propose a constrained sequence-to-sequence root extraction method. Experimental results show our constrained model outperforms a variety of methods at root extraction. Furthermore, by enriching word embeddings with resulting decompositions, we show improved results on word analogy, word similarity, and language modeling tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于约束的序列到序列闪语词根提取方法
本文主要研究闪族语族词汇的“词根提取”问题。将自然语言处理技术应用于这些语言的一个挑战是数据稀疏性问题,这源于它们丰富的内部形态学,其中子结构本质上是非连接的,语素在构词法中是交叉的。虽然以前的自动化方法依赖于人类策划的规则或多类分类,但它们并没有充分利用单词中规则的、顺序的连接形态学的各种组合,以及根和模式模板茎中的内部交错。为了解决这个问题,我们提出了一种约束序列到序列的根提取方法。实验结果表明,约束模型在根提取方面优于多种方法。此外,通过使用生成的分解来丰富词嵌入,我们在词类比、词相似度和语言建模任务上显示了改进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Morphology-aware Word-Segmentation in Dialectal Arabic Adaptation of Neural Machine Translation Arabic Tweet-Act: Speech Act Recognition for Arabic Asynchronous Conversations En-Ar Bilingual Word Embeddings without Word Alignment: Factors Effects Simple But Not Naïve: Fine-Grained Arabic Dialect Identification Using Only N-Grams The SMarT Classifier for Arabic Fine-Grained Dialect Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1