INS/Wi-Fi based indoor navigation using adaptive Kalman filtering and vehicle constraints

W. Chai, Cheng Chen, E. Edwan, Jieying Zhang, O. Loffeld
{"title":"INS/Wi-Fi based indoor navigation using adaptive Kalman filtering and vehicle constraints","authors":"W. Chai, Cheng Chen, E. Edwan, Jieying Zhang, O. Loffeld","doi":"10.1109/WPNC.2012.6268735","DOIUrl":null,"url":null,"abstract":"Due to the complementary nature of inertial navigation system (INS) and Wi-Fi positioning principles, an INS/Wi-Fi integrated system is expected to form a low-cost and continuous indoor navigation solution with better performance than using the standalone systems. In this paper, we explore the integration of Wi-Fi measurements with data from microelectromechanical systems (MEMS) based inertial measurement unit (IMU) for indoor vehicle navigation. Two enhancements, which employ adaptive Kalman filtering (AKF) and vehicle constraints, for supporting the integrated system are presented. One field experiment has been conducted for estimating the trajectory of a mobile robot vehicle. The numerical results show that the enhanced integrated system provides higher navigation accuracy, compared to using standalone Wi-Fi positioning and conventional INS/Wi-Fi integration.","PeriodicalId":399340,"journal":{"name":"2012 9th Workshop on Positioning, Navigation and Communication","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th Workshop on Positioning, Navigation and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2012.6268735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Due to the complementary nature of inertial navigation system (INS) and Wi-Fi positioning principles, an INS/Wi-Fi integrated system is expected to form a low-cost and continuous indoor navigation solution with better performance than using the standalone systems. In this paper, we explore the integration of Wi-Fi measurements with data from microelectromechanical systems (MEMS) based inertial measurement unit (IMU) for indoor vehicle navigation. Two enhancements, which employ adaptive Kalman filtering (AKF) and vehicle constraints, for supporting the integrated system are presented. One field experiment has been conducted for estimating the trajectory of a mobile robot vehicle. The numerical results show that the enhanced integrated system provides higher navigation accuracy, compared to using standalone Wi-Fi positioning and conventional INS/Wi-Fi integration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应卡尔曼滤波和车辆约束的INS/Wi-Fi室内导航
由于惯性导航系统(INS)和Wi-Fi定位原理的互补性,惯性导航系统/Wi-Fi集成系统有望形成一种低成本、连续的室内导航解决方案,其性能优于独立系统。在本文中,我们探索了Wi-Fi测量与基于微机电系统(MEMS)的惯性测量单元(IMU)数据的集成,用于室内车辆导航。为了支持集成系统,提出了采用自适应卡尔曼滤波(AKF)和车辆约束的两种增强方法。为估计移动机器人车辆的运动轨迹,进行了现场试验。数值结果表明,与单独使用Wi-Fi定位和传统的INS/Wi-Fi集成相比,增强的集成系统具有更高的导航精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of fusion algorithm for hybrid pedestrian localization and navigation Improved localization using Kalman filter on estimated positions Characterizing and improving the collaborative position location problem Cooperative localization with 802.15.4a CSS radios: Robustness to node failures Passive localization using array sensor with support vector machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1