M. Alam, M. Sulaiman, Asma Ferdowsi, M. Sayem, Nazmus Sakib Bin Khair
{"title":"Moth Flame Optimization Algorithm including Renewable Energy for Minimization of Generation & Emission Costs in Optimal Power Flow","authors":"M. Alam, M. Sulaiman, Asma Ferdowsi, M. Sayem, Nazmus Sakib Bin Khair","doi":"10.1109/ACEEE56193.2022.9851834","DOIUrl":null,"url":null,"abstract":"Optimal power flow is an approach for enhancing power system performance, scheduling, and energy management. Because of its adaptability in a variety of settings, optimum power flow is becoming increasingly vital. The demand for optimization is driven by the need for cost-effective, efficient, and optimum solutions. Optimization is useful in a variety of fields, including science, economics, and engineering. This problem must be overcome to achieve the goals while keeping the system stable. Moth Flame Optimization (MFO), a recently developed metaheuristic algorithm, will be used to solve objective functions of the OPF issue for combined cost and emission reduction in IEEE 57-bus systems with thermal and stochastic wind-solar-small hydropower producing systems. According to the data, the MFO generated the best results across all simulated research conditions. MFO, for example, offers a total cost and emission of power generation of 248.4547 $/h for IEEE 57-bus systems, providing a 1.5 percent cost savings per hour above the worst values obtained when comparing approaches. According to the statistics, MFO beats the other algorithms and is a viable solution to the OPF problem.","PeriodicalId":142893,"journal":{"name":"2022 5th Asia Conference on Energy and Electrical Engineering (ACEEE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th Asia Conference on Energy and Electrical Engineering (ACEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACEEE56193.2022.9851834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Optimal power flow is an approach for enhancing power system performance, scheduling, and energy management. Because of its adaptability in a variety of settings, optimum power flow is becoming increasingly vital. The demand for optimization is driven by the need for cost-effective, efficient, and optimum solutions. Optimization is useful in a variety of fields, including science, economics, and engineering. This problem must be overcome to achieve the goals while keeping the system stable. Moth Flame Optimization (MFO), a recently developed metaheuristic algorithm, will be used to solve objective functions of the OPF issue for combined cost and emission reduction in IEEE 57-bus systems with thermal and stochastic wind-solar-small hydropower producing systems. According to the data, the MFO generated the best results across all simulated research conditions. MFO, for example, offers a total cost and emission of power generation of 248.4547 $/h for IEEE 57-bus systems, providing a 1.5 percent cost savings per hour above the worst values obtained when comparing approaches. According to the statistics, MFO beats the other algorithms and is a viable solution to the OPF problem.