System Level Parameterizations, constraints and synthesis

Yuh-Shyang Wang, N. Matni, J. Doyle
{"title":"System Level Parameterizations, constraints and synthesis","authors":"Yuh-Shyang Wang, N. Matni, J. Doyle","doi":"10.23919/ACC.2017.7963133","DOIUrl":null,"url":null,"abstract":"We introduce the system level approach to controller synthesis, which is composed of three elements: System Level Parameterizations (SLPs), System Level Constraints (SLCs) and System Level Synthesis (SLS) problems. SLPs provide a novel parameterization of all internally stabilizing controllers and the system responses that they achieve. These can be combined with SLCs to provide parameterizations of constrained stabilizing controllers. We provide a catalog of useful SLCs, and show that by using SLPs with SLCs, we can parameterize the largest known class of constrained stabilizing controllers that admit a convex characterization. Finally, we formulate the SLS problem, and show that it defines the broadest known class of constrained optimal control problems that can be solved using convex programming. We end by using the system level approach to computationally explore tradeoffs in controller performance, architecture cost, robustness and synthesis/implementation complexity.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We introduce the system level approach to controller synthesis, which is composed of three elements: System Level Parameterizations (SLPs), System Level Constraints (SLCs) and System Level Synthesis (SLS) problems. SLPs provide a novel parameterization of all internally stabilizing controllers and the system responses that they achieve. These can be combined with SLCs to provide parameterizations of constrained stabilizing controllers. We provide a catalog of useful SLCs, and show that by using SLPs with SLCs, we can parameterize the largest known class of constrained stabilizing controllers that admit a convex characterization. Finally, we formulate the SLS problem, and show that it defines the broadest known class of constrained optimal control problems that can be solved using convex programming. We end by using the system level approach to computationally explore tradeoffs in controller performance, architecture cost, robustness and synthesis/implementation complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系统级参数化、约束和综合
我们介绍了系统级控制器综合方法,它由三个要素组成:系统级参数化(slp)、系统级约束(SLCs)和系统级综合(SLS)问题。slp为所有内部稳定控制器及其实现的系统响应提供了一种新的参数化方法。这些可以与slc组合以提供约束稳定控制器的参数化。我们提供了一个有用的slc的目录,并表明通过使用slp和slc,我们可以参数化最大的一类已知的允许凸表征的约束稳定控制器。最后,我们提出了SLS问题,并证明它定义了已知最广泛的一类约束最优控制问题,可以用凸规划来解决。最后,我们使用系统级方法来计算探索控制器性能,架构成本,鲁棒性和综合/实现复杂性的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary and semi-plenary sessions Spatial Iterative Learning Control: Systems with input saturation Distributed Second Order Sliding Modes for Optimal Load Frequency Control Adaptive optimal observer design via approximate dynamic programming Nonlinear adaptive stabilization of a class of planar slow-fast systems at a non-hyperbolic point
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1