Advanced techniques for achieving ultra-shallow junctions in future CMOS devices

J. Barnett, R. Hill, W. Loh, C. Hobbs, P. Majhi, R. Jammy
{"title":"Advanced techniques for achieving ultra-shallow junctions in future CMOS devices","authors":"J. Barnett, R. Hill, W. Loh, C. Hobbs, P. Majhi, R. Jammy","doi":"10.1109/IWJT.2010.5474968","DOIUrl":null,"url":null,"abstract":"The continued scaling of CMOS devices to the sub-16 nm technology node will likely be achieved with new architectures, such as FinFETs, and new materials, such as high mobility substrates (Ge and/or III-V based). At these technology nodes, abrupt channel doping profiles with high dopant activation will be needed under reduced thermal budget environments. While advanced dopant incorporation and activation techniques continue to be developed for Si scaling, implanting ions into III-V materials presents a fundamental problem as it induces crystal damage, which can alter the stoichiometry in a manner that is difficult to recover. The residual damage can lead to higher junction leakage and lower dopant activation. These challenges require the development of novel junction processing techniques that are inherently defect-free and can be controlled at the nm scale. One such promising technique, monolayer doping (MLD), is reviewed in this article.","PeriodicalId":205070,"journal":{"name":"2010 International Workshop on Junction Technology Extended Abstracts","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Junction Technology Extended Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWJT.2010.5474968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The continued scaling of CMOS devices to the sub-16 nm technology node will likely be achieved with new architectures, such as FinFETs, and new materials, such as high mobility substrates (Ge and/or III-V based). At these technology nodes, abrupt channel doping profiles with high dopant activation will be needed under reduced thermal budget environments. While advanced dopant incorporation and activation techniques continue to be developed for Si scaling, implanting ions into III-V materials presents a fundamental problem as it induces crystal damage, which can alter the stoichiometry in a manner that is difficult to recover. The residual damage can lead to higher junction leakage and lower dopant activation. These challenges require the development of novel junction processing techniques that are inherently defect-free and can be controlled at the nm scale. One such promising technique, monolayer doping (MLD), is reviewed in this article.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在未来CMOS器件中实现超浅结的先进技术
CMOS器件的持续缩放到16纳米以下的技术节点可能会通过新架构(如finfet)和新材料(如高迁移率基板(Ge和/或III-V基板))来实现。在这些技术节点上,将需要在低热收支环境下具有高掺杂激活的突变通道掺杂剖面。虽然先进的掺杂剂掺入和激活技术仍在继续发展,但将离子注入III-V材料存在一个根本问题,因为它会引起晶体损伤,从而改变化学计量,难以恢复。残余损伤会导致较高的结漏和较低的掺杂激活。这些挑战需要新型结处理技术的发展,这些技术本质上是无缺陷的,并且可以在纳米尺度上进行控制。本文对其中一种很有前途的技术——单层掺杂技术进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced thermal measurements of high power LEDs by junction characteristic Carbon nanotube thin film transistor devices Dual beam laser spike annealing technology Application of coherent resonant tunnelling theory in GaAs RTD fabrication Epitaxial NiSi2 source and drain technology for atomic-scale junction control in silicon nanowire MOSFETs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1